

Instant OpenCV for iOS

Learn how to build real-time computer vision applications
for the iOS platform using the OpenCV library

Kirill Kornyakov

Alexander Shishkov

BIRMINGHAM - MUMBAI

Instant OpenCV for iOS

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2013

Production Reference: 1230813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78216-384-8

www.packtpub.com

Credits

Authors
Kirill Kornyakov

Alexander Shishkov

Reviewers
Emmanuel d'Angelo

Jean-David Gadina

Acquisition Editor
Usha Iyer

Commissioning Editor
Subho Gupta

Technical Editor
Dennis John

Project Coordinator
Akash Poojary

Proofreader
Clyde Jenkins

Production Coordinator
Prachali Bhiwandkar

Cover Work
Prachali Bhiwandkar

Cover Image
Conidon Miranda

About the Authors

Kirill Kornyakov has been a member of core OpenCV development team for the last
4 years. He works at Itseez (Nizhny Novgorod, Russia), where he leads the development
of an OpenCV library for the Android operating system, with a focus on performance
optimization for the NVIDIA Tegra platform. He also works on implementation of real-time
computer vision algorithms, mainly computational photography applications. Kirill has
B.Sc. and M.Sc. degrees from Nizhny Novgorod State University, Russia.

To Nina and Brusnichka, whose warmth gives me strength.

Alexander Shishkov has been working in the field of computer vision for the last five years.
He works at Itseez (Nizhny Novgorod, Russia), where he has developed technologies such as
video-based people counting systems, object detection, and image retrieval systems. He also
created continuous integration system and websites (http://opencv.org) for OpenCV.
Alexander has B.Sc. and M.Sc. degrees from Nizhny Novgorod State University, Russia.

I want to thank my family who supported and encouraged me in spite of
all the time I was away from them.

About the Reviewers

Emmanuel d'Angelo is an image processing enthusiast who has turned his hobby into
a job. After working as a technical consultant on various projects ranging from real-time
image stabilization to large-scale image database analysis, he is now in charge of developing
Digital Signal Processing (DSP) applications on low-power consumer devices. You can find
more insight about his research and image processing-related information on his blog at
http://www.computersdontsee.net/.

Emmanuel holds a Ph.D. degree from the Swiss Federal Institute of Technology (EPFL,
Switzerland) and a Master's degree in Remote Sensing from ISAE (Toulouse, France).

Jean-David Gadina is a software developer from Lausanne, Switzerland.

He has a lot of experience in languages, such as C, Objective-C, C++, and x86 assembly,
and develops software for desktop (Mac/Windows) and mobile devices (iOS).

Jean-David currently works for DigiDNA (www.digidna.net), a Swiss and Australian
software company specializing in data management and transfer between Apple mobile
the devices and computers. DigiDNA produces DiskAid, an iPhone file transfer software
for the PC and Mac, as well as FileApp, an iPhone filesystem and document viewer.

In his spare time, Jean-David enjoys working on the development of an operating system,
as well as on other open source tools and software libraries.

You can check out Jean-David's blog at www.noxeos.com, or follow him on Twitter
(@macmade).

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.packtpub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.packtpub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.packtpub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.packtpub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Instant OpenCV for iOS	 5

Getting started with iOS (Simple)	 5
Displaying an image from resources (Simple)	 10
Linking OpenCV to an iOS project (Simple)	 15
Detecting faces with Cascade Classifier (Intermediate)	 21
Printing a postcard (Intermediate)	 24
Working with images in Gallery (Intermediate)	 30
Applying a retro effect (Intermediate)	 37
Taking photos from camera (Intermediate)	 41
Creating a static library (Intermediate)	 46
Capturing a video from camera (Simple)	 50
Control advanced camera settings (Advanced)	 55
Applying effects to live video (Intermediate)	 60
Saving video from camera (Simple)	 63
Optimizing performance with ARM NEON (Advanced)	 65
Detecting facial features (Advanced)	 72
Using the Accelerate framework (Advanced)	 77
Building OpenCV for iOS from sources (Advanced)	 81

Preface
Instant OpenCV for iOS is a practical guide, showing every important step for building a
computer vision application for the iOS platform. It will help you to port your OpenCV code,
profile and optimize it, and then wrap into a GUI application. This book helps you to learn how
to build a simple, but powerful computer vision application for the iOS devices from scratch.
Throughout the book, you'll learn details that will help you to become a professional at iOS
development using OpenCV. As usual, you begin with the simple "Hello World" application, but
finally you will be able to create complex image processing applications with supreme efficiency.

Each recipe is accompanied with a sample project, helping you to focus on a particular aspect
of the technology.

What this book covers
ff Getting started with iOS (Simple), helps you to set up your development environment

and run your first "Hello World" iOS application.

ff Displaying an image from resources (Simple), introduces you to basic GUI
concepts on iOS, and covers loading of an image from resources and displaying
it on the screen.

ff Linking OpenCV to an iOS project (Simple), explains how to link OpenCV library and
call any function from it.

ff Detecting faces with Cascade Classifier (Intermediate), shows how to detect faces
using OpenCV.

ff Printing a postcard (Intermediate), demonstrates how a simple photo effect can
be implemented.

ff Working with images in Gallery (Intermediate), explains how to load and save images
from/to Gallery.

ff Applying a retro effect (Intermediate), demonstrates another interesting photo effect
that makes photos look old.

ff Taking photos from camera (Intermediate), shows how to capture static images
with camera.

Preface

2

ff Creating a static library (Intermediate), explains how to create a static library
project in Xcode.

ff Capturing a video from camera (Simple), shows how to capture a video stream
from camera.

ff Control advanced camera settings (Advanced), explains how to control advanced
camera settings, such as exposure, focus, and white balance.

ff Applying effects to live video (Intermediate), shows how to process captured video
frames on the fly.

ff Saving video from camera (Simple), explains how to save video stream to the device
with hardware encoding.

ff Optimizing the performance with ARM NEON (Advanced), explains how to use SIMD
instructions to vectorize your code and improve the performance.

ff Detecting facial features (Advanced), presents a simple facial feature detection demo.

ff Using the Accelerate framework (Advanced), explains how to link the framework, and
how to use it for performance optimization.

ff Building OpenCV for iOS from sources (Advanced), explains where to get and how to
build the latest OpenCV sources.

What you need for this book
In order to be able to build and run sample projects from this book, you will need a Mac OS X
computer, as it is the only supported way to develop for iOS platform. You should also have a
device with iOS 6.0 or higher, because Simulator doesn't support camera, and some projects
will not work on it.

Finally, you need the latest version of Xcode, so you can modify, build, and execute examples
from this book.

Who this book is for
This book is intended for OpenCV developers who are interested in porting their applications
to the iOS platform. You need to have some basic experience with OpenCV and computer
vision, but can be a beginner in Objective-C or other iOS tools. The book could be also helpful
for those who are familiar with iOS and want to add some image processing or computer
vision functionality to their projects.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Preface

3

Code words in text are shown as follows: "The NSLog function, which we added first, is
intended for logging simple text messages, similar to the printf function in the C language."

A block of code is set as follows:

- (void)viewDidLoad
{
 [super viewDidLoad];

 // Read the image
 image = [UIImage imageNamed:@"lena.png"];
 if (image != nil)
 imageView.image = image;
}

Any command-line input or output is written as follows:

$ cd /

$ sudo ln -s /Applications/Xcode.app/Contents/Developer Developer

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "As we know the
resolution of the camera only after session starts, we should create a filter object when
the StartCapture button is clicked".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

4

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded on our website, or
added to any list of existing errata, under the Errata section of that title. Any existing errata can
be viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

Instant OpenCV for iOS

Instant OpenCV for iOS is a practical guide, showing every important step for building a
computer vision application for the iOS platform. It will help you port your OpenCV code,
profile and optimize it, and then wrap into a GUI application. Each recipe is accompanied
with a sample project, helping you focus on a particular aspect of the technology.

Getting started with iOS (Simple)
In this recipe, we'll provide all the necessary steps to set up your environment and run a
"Hello World" application on a device. Development for the iOS platform may seem to be
difficult in the beginning, because the list of prerequisites is somewhat large. We'll provide
important links for those who are not familiar with Mac/iOS development, Objective-C, and
Xcode. If you're already familiar with the iOS development, you can skip this recipe.

Getting ready
Apple has established a very rich and sound ecosystem for developers, where each component
is tightly integrated with others. Once you're familiar with its basic rules and principles, you'll be
able to switch between different types of projects easily. But it may take some time to familiarize
yourself with the tools and frameworks. And the very first prerequisite for iOS development is a
Mac OS X workstation or laptop, and you cannot use other operating systems. It is also highly
recommended to use the latest available version of the OS and tools, as some new features are
not backported to older versions. Currently, the latest version is the Mac OS X 10.8, also known
as Mountain Lion.

Unfortunately, you can't move forward without a Mac, but if you're new to
this platform, it could become a very rewarding experience. Proficiency
with multiple platforms is beneficial for your professional skills.

Instant OpenCV for iOS

6

Secondly, to run some examples from this book, you will definitely need an iOS device, because
iOS Simulator lacks camera support. You should also know that Simulator executes x86 native
code, while real iOS devices are running on ARM. This difference will not allow you to understand
the actual performance of your application, which is usually important. You can use a simple
device such as iPod Touch, which is quite cheap and may be useful not only for development!
But of course, we recommend you to find one of the latest iOS devices; currently these are
iPhone 5 and iPad 4. The iOS version should be 6.0 or higher.

Actually, you can use Simulator for experimenting with many examples in
this book. It is also a good chance to test your application on a tablet if
you only have a phone, or vise versa. But please note that samples that
need camera will not work. Every time you need a real device, we will
mention that in the beginning of the recipe.

When you have all the hardware, you'll need to install Xcode—the cornerstone of all
Mac-centric development. You will need Version 4.6.3 or higher. We recommend installing
it together with the command-line tools, so you'll have access to compiler and some other
tools from the Terminal.

We're almost ready to start development, and you can actually proceed to the following
How to do it... section if you're going to use Simulator. But if you're going to use a real
device now or later, there is one more step. In order to run your application on a real
device, you have to become a registered Apple developer (which is free), and you will
also need to subscribe for the iOS Developer Program, which will cost you $99 per year.
This may look too high for the opportunity to play with your little applications, but this is
how Apple verifies that you're serious, and that you will do your best to create a decent
app. Also, it gives you access to all beta software from Apple, related to iOS, which is
very important from a developer's perspective. Registration procedure is described at
https://developer.apple.com/register/index.action, and the page about
the "iOS Developer Program" is at https://developer.apple.com/programs/ios/.
Finally, you need to register your device according to this instruction found at http://bit.
ly/3848_DeviceProvisioning.

Source code for this recipe is available in the Recipe01_HelloWorld folder in the code
bundle that accompanies this book.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Instant OpenCV for iOS

7

How to do it...
So, now we're ready to create our first "Hello World" application, and it's going to be in
Objective-C. The following are the steps required to achieve our goal:

1.	 Connect your device to the host computer.

2.	 Open Xcode and create a new project.

3.	 Modify the code, so that the "Hello World" text will appear.

4.	 Run the application.

Let's implement the described steps:

1.	 We'll start by connecting your device to the computer (you can skip this step in case
you're using Simulator). This is done using the USB cable, and it not only allows you to
charge your device, but also provides some control over it. There are some applications
available that allow you to copy files from/to a connected device (for example, iFunBox),
but we'll not need it, because we'll be using Xcode to communicate with the device.

2.	 Next, we'll launch Xcode. When started, Xcode will show your menu with several
options, and you should choose the Create a new Xcode project option. Then you
need to choose Single View Application template by navigating to iOS | Application.
In the dialog box that appears, you have to specify values for Product Name,
Organization Name (you can use your name), and Company Identifier. The following
screenshot shows the window with options for creating a new project:

Instant OpenCV for iOS

8

3.	 We also recommend you uncheck the Include Unit Tests checkbox, because we
don't need them for now. Then click on Next, choose a folder for you project, click on
Create, and you're done!

4.	 Now it's time to add some handcrafted code to the auto-generated project. You can
see that the Xcode window is divided into several "areas". The following screenshot
is taken from the official Xcode User Guide, explaining the layout (http://bit.
ly/3848_Xcode):

5.	 Open the ViewController.m file, which can be found in the Project Navigator
Area on the left-hand side. We're going to add a simple logging to the console, and an
alert window. In order to do that, please edit the viewDidLoad method, so it looks
like the following code:
- (void)viewDidLoad
{
 [super viewDidLoad];

 // Console output
 NSLog(@"Hello, World!");

 // Alert window
 UIAlertView *alert = [UIAlertView alloc];
 alert = [alert initWithTitle:@"Hey there!"
 message:@"Welcome to OpenCV on iOS \
 development community"

Instant OpenCV for iOS

9

 delegate:nil
 cancelButtonTitle:@"Continue"
 otherButtonTitles:nil];

 [alert show];
}

6.	 Then open the Debug Area in the Xcode navigating to View | Debug Area | Show
Debug Area. Now click on the Run button located in the top-left corner of the Xcode
window, and check that you can see both the alert window on the device's screen and
the log message in the Debug Area. That's it; you have your first application running!

How it works...
The NSLog function, which we added first, is intended for logging simple text messages,
similar to the printf function in the C language. You can also see that our string was
preceded with the @ character, which is used for implicit conversion to the NSString
object. Just like printf, NSLog allows you to print values of multiple variables with
proper formatting, so this function is quite helpful during debugging and profiling of
your application.

While the NSLog function is useful for logging, you should not keep
these logs in the production code because like any other IO procedure,
it has its cost, which may negatively affect the performance. So, you
should use conditional compilation or something else to remove all
debug logs from the release code.

The next code block shows how one can create a simple message window with some
notification. We are not going to use UIAlertView in later recipes, but this is a good
occasion to get familiar with creating objects and calling their methods in Objective-C.
The first line shows how a new object may be created. Here, the alloc method is called
that was inherited by UIAlertView from its parent NSObject class. Next, we're calling
the initWithTitle method, passing necessary arguments to it. This method returns a
newly initialized alert window. Finally, we call the show method to display the window with
our message.

Please note that we've reformatted the code for readability, and we've even created one
surplus temporary object. It was possible to call the initWithTitle method of a newly
allocated object, so in most cases, you will likely meet the initialization code as shown in the
following code snippet.

UIAlertView * alert = [[UIAlertView alloc] initWithTitle:@"Hey there!"
message:@"Welcome to OpenCV on iOS development community" delegate:nil
cancelButtonTitle:@"Continue" otherButtonTitles:nil];

Instant OpenCV for iOS

10

There's more...
That's all for this recipe, but if you feel that you need some more introductory information on
iOS development in general, we'll provide you with some pointers. Later, we will focus mostly
on OpenCV-related aspects of programming, so if you want to better understand Apple's tools
and frameworks, you should spend some time studying other resources.

Xcode
We encourage you to "sharpen your saw" and read more about Xcode. Refer to the official
documentation at https://developer.apple.com/xcode/. For example, you can
create several Simulators to test your application on different types of devices. Navigate to
Xcode | Preferences, and then go to the Downloads | Components to see the available
options. Many useful tips on Xcode and sample code examples are available in the iOS
Developer Library at http://developer.apple.com/library/ios/navigation/.

Objective-C
One of the important things you should know about Objective-C is that it is a strict superset of
C, and you can mix it with C. Because OpenCV is written in C++, we have to use Objective-C++,
which allows to use a combination of C++ and Objective-C syntax and also allows you to reuse
your C++ code or libraries (as we do with OpenCV). Nonetheless, Objective-C is the main
language for iOS, so you should get familiar with it in order to use the available libraries and
frameworks effectively.

Displaying an image from resources (Simple)
Every application may keep some images in its resources, such as textures or icons. In this
recipe, we'll study how one can add an image to resources, load it into the UIImage object,
and then display it on the screen. We will use the UIImageView component for that purpose,
and get familiar with the important Model-View-Controller (MVC) design pattern.

Getting ready
Source code for this recipe is available in the Recipe02_DisplayingImage folder in the
code bundle that accompanies this book. You can also take your own image with the preferred
320 x 480 resolution. Or, you can use the provided lena.png image, based on the famous
picture among computer vision engineers (http://lenna.org). You can use iOS Simulator
to work on this recipe.

Instant OpenCV for iOS

11

How to do it...
The following are the steps required to display an image:

1.	 Add an image to the project's resources.

2.	 Add UIImageView component to the View.

3.	 Add image loading code.

4.	 Display an image on the screen.

Let's implement the described steps:

1.	 For this example, you can use the Xcode project created in the previous recipe. We'll
start by adding an image to the project. For that purpose, you should use the Add
files to ... context menu from the Project Navigator Area. In the opened window, you
should select the image and click on the Add button. The filename should appear in
the Supporting Files group of the Project Navigator Area.

2.	 Next, we'll add the UIImageView component to our View. For that purpose, you have
to open the storyboard file corresponding to your device in the Project Navigator Area.
Initially it looks like a blank panel. You should find the Image View component in the
Objects list located in the bottom-right corner of the Xcode window and drag it to the
View. In the following screenshot, you can see the Objects list in storyboard editor:

Instant OpenCV for iOS

12

3.	 We now have the View for displaying images, but it doesn't have any code-behind.
In order to add some logic, we should first add a special variable to our Controller
class. In order to do that, change the interface of the ViewController class in
the ViewController.h file as follows:
@interface ViewController : UIViewController {
 UIImage* image;
}
@property (nonatomic, weak) IBOutlet UIImageView* imageView;
@end

4.	 Then we should connect the newly created property and the visual component on our
View. Open storyboard again and turn on the Assistant Editor mode by navigating to
View | Assistant Editor | Show Assistant Editor. After that, the main Xcode window
will be split into two parts. On one side you can find the ViewController.h file,
and the storyboard will be shown on the other side. Connect the imageView property
with the UIImageView component, as shown in the following screenshot:

5.	 Now it's time to add some code to the Controller's implementation file. If you use
your own image, please change the filename accordingly, as shown in the following
code snippet:
#import "ViewController.h"

@interface ViewController ()
@end

@implementation ViewController
@synthesize imageView;

- (void)viewDidLoad

Instant OpenCV for iOS

13

{
 [super viewDidLoad];

 // Read the image
 image = [UIImage imageNamed:@"lena.png"];
 if (image != nil)
 imageView.image = image; // Displaying the image
}

6.	 That's all; you can now run your application by clicking on the Run button.

How it works...
In this recipe we have implemented our first GUI on iOS. We'll now discuss some basic
concepts related to GUI development. The most important idea is using Model-View-Controller
design pattern, which separates visual representation, user interaction logic, and the core
logic of the application. There are three parts in this pattern:

1.	 Model: This contains business logic, such as data and algorithms for data processing.
It does not know how this information should be presented to the user.

2.	 View: This is responsible for visualization. It can be imagined as some GUI form with
visual components on it (for example, buttons, labels, and so on).

3.	 Controller: This provides communication between the user and the system
core. It monitors the user's input and uses Model and a View to implement
the necessary response.

Usually, applications have several Views with some rules to switch between them. Also, simple
programs usually contain only two parts of the pattern: View and Controller, because logic is
very simple, and developers do not create a separate entity for the Model.

A View is created as a storyboard element. The file with the *.storyboard extension allows
you to describe an interface of your application with all internal elements. Xcode contains
a special graphical tool to add visual controls and change their parameters. So, all that you
need is to fill your View with the needed GUI components using drag-and-drop.

All our examples are based on the storyboards mechanism that was
introduced in iOS 5. It is a great intuitive way to describe all interactions
between visual components of your application. If you want to support
devices with the iOS version older than 5, you should use .xib files to
describe the application interface.

Instant OpenCV for iOS

14

When you create a new project, Xcode adds two storyboards for different device families
(MainStoryboard_iPhone.storyboard and MainStoryboard_iPad.storyboard).
Of course, you can use a single storyboard for all devices. For this purpose, you should change
value of the Main Storyboard property in Deployment Settings of the project. But tablets
and smartphones differ much in screen resolutions, so it is highly recommended to create
separate Views with different layouts for both families.

For each View, you should normally have a Controller. For every new project, Xcode creates
a ViewController class by default (ViewController.h and ViewController.m
files). In our example, we first add the IBOutlet property to the interface declaration of our
View. IBOutlet is a special macro to denote a variable that can be attached to some visual
component on the View. IBOutlet resolves to nothing, but it makes clear to Xcode that such
variables can be linked with UI elements.

In our implementation, we use the @property keyword. By default, if we add some variable
to the Controller's interface (as well as to any other interface), it will be private, so we can't
access it out of the class. If we want to do it, we can use the @property keyword. It is
somewhat added as an instance variable, but it requires you to implement getter and setter
methods. In our example, we do it by calling another special @synthesize keyword. It
automatically generates getter and setter methods for your variable.

In this recipe, we add some code to the viewDidLoad method of the ViewController
class. This method is a good place to show our image, because it is called after the
ViewController has been loaded. You may have noticed that this method already had
the following line:

[super viewDidLoad];

It is just a call of the viewDidLoad method implemented in the superclass. Here we use
UIImage object to load an image from the file. UIImage is a high-level class to store and
display image data. It is similar to cv::Mat class as an image container, but can't be used
for mathematical computations.

To display the image on the View, we just need to assign the variable with the loaded image
to the imageView.image property.

There's more...
You have the possibility to implement getters and setters manually:

-(UIImageView*)imageView
{
 return imageView1;
}

-(void)setImageView:(UIImageView*)newImageView

Instant OpenCV for iOS

15

{
 if (newImageView != imageView1)
 {
 imageView1 = newImageView;
 }
}

Cocoa design patterns
In this recipe, we get familiar with one of the most important Cocoa design patterns—
Model-View-Controller. But there are other important patterns that you should know to
design your applications properly. We encourage you to study the Cocoa Fundamentals
Guide (http://bit.ly/3848_CocoaFundamentalsGuide) and the Cocoa Design
Patterns article in particular (http://bit.ly/3848_CocoaDesignPatterns).

Linking OpenCV to an iOS project (Simple)
For now, we have some basic framework for testing image processing and computer vision
algorithms. Now it's time to add OpenCV to your project and add your first call to the library.
You will learn how to convert UIImage to cv::Mat, and make a call to the C++ library using
Objective-C code.

Getting ready
First you should download the OpenCV framework for iOS from the official website at
http://opencv.org. In this book, we will use Version 2.4.6. You can use the iOS
Simulator to work on this recipe. Source code for this recipe can be found in the
Recipe03_LinkingOpenCV folder in the code bundle that accompanies this book.

How to do it...
The following are the main steps to accomplish the task:

1.	 Add the OpenCV framework to your project.

2.	 Convert image to the OpenCV format.

3.	 Process image with a simple OpenCV call.

4.	 Convert image back.

5.	 Display image as before.

Instant OpenCV for iOS

16

Let's implement the described steps:

1.	 We continue modifying the previous project, so that you can use it; otherwise create
a new project with UIImageView. We'll start by adding the OpenCV framework to the
Xcode project. There are two ways to do it.

You can add the framework as a resource as described in previous recipe. This is a
straightforward approach. Alternatively, the framework can be added through project
properties by navigating to Project | Build Phases | Link Binary With Libraries.
To open project properties you should click to the project name in the Project
Navigator area.

2.	 Next, we'll include OpenCV header files to our project. In order to do so, we will
modify the Recipe03_LinkingOpenCV-Prefix.pch precompiled header.
To avoid conflicts, we will add the following code to the very beginning of the file,
above all other imports:
#ifdef __cplusplus
#import <opencv2/opencv.hpp>
#endif

This is needed, because OpenCV redefines some names, for example, min/max
functions.

3.	 Set the value of Compile Sources As property as Objective-C++. The property is
available in the project settings and can be accessed by navigating to Project |
Build Settings | Apple LLVM compiler 4.1 - Language.

4.	 To convert the images from UIImage to cv::Mat, you can use the following functions:
UIImage* MatToUIImage(const cv::Mat& image)
{
 NSData *data = [NSData dataWithBytes:image.data length:image.
elemSize()*image.total()];

 CGColorSpaceRef colorSpace;

 if (image.elemSize() == 1) {
 colorSpace = CGColorSpaceCreateDeviceGray();
 } else {
 colorSpace = CGColorSpaceCreateDeviceRGB();
 }

 CGDataProviderRef provider = CGDataProviderCreateWithCFData((__
bridge CFDataRef)data);

 // Creating CGImage from cv::Mat
 CGImageRef imageRef = CGImageCreate(image.cols, //width

Instant OpenCV for iOS

17

 image.rows, //height
 8, //bits per
component
 8*image.elemSize(),//bits
per pixel
 image.step.p[0], //
bytesPerRow
 colorSpace, //colorspace
 kCGImageAlphaNone|kCGBitmapByteOrderDefault,//
bitmap info
 provider, //
CGDataProviderRef
 NULL, //decode
 false, //should
interpolate
 kCGRenderingIntentDefault
//intent
);

 // Getting UIImage from CGImage
 UIImage *finalImage = [UIImage imageWithCGImage:imageRef];
 CGImageRelease(imageRef);
 CGDataProviderRelease(provider);
 CGColorSpaceRelease(colorSpace);

 return finalImage;
}

void UIImageToMat(const UIImage* image, cv::Mat& m,
 bool alphaExist = false)
{
 CGColorSpaceRef colorSpace = CGImageGetColorSpace(image.
CGImage);
 CGFloat cols = image.size.width, rows = image.size.height;
 CGContextRef contextRef;
 CGBitmapInfo bitmapInfo = kCGImageAlphaPremultipliedLast;
 if (CGColorSpaceGetModel(colorSpace) == 0)
 {
 m.create(rows, cols, CV_8UC1);
 //8 bits per component, 1 channel
 bitmapInfo = kCGImageAlphaNone;
 if (!alphaExist)
 bitmapInfo = kCGImageAlphaNone;
 contextRef = CGBitmapContextCreate(m.data, m.cols, m.rows,
8,

Instant OpenCV for iOS

18

 m.step[0], colorSpace,
 bitmapInfo);
 }
 else
 {
 m.create(rows, cols, CV_8UC4); // 8 bits per component, 4
channels
 if (!alphaExist)
 bitmapInfo = kCGImageAlphaNoneSkipLast |
 kCGBitmapByteOrderDefault;
 contextRef = CGBitmapContextCreate(m.data, m.cols, m.rows,
8,
 m.step[0], colorSpace,
 bitmapInfo);
 }
 CGContextDrawImage(contextRef, CGRectMake(0, 0, cols, rows),
 image.CGImage);
 CGContextRelease(contextRef);
}

5.	 These functions are included into the library starting from Version 2.4.6 of OpenCV. In
order to use them, you should include the ios.h header file.
#import "opencv2/highgui/ios.h"

6.	 We won't explain these functions in this recipe, because it requires from readers
some knowledge about CGImage and UIImage classes; but the use of these
methods is really simple. Let's consider a simple example that extracts edges
from the image. In order to do so, you have to add the following code to the
viewDidLoad() method:

- (void)viewDidLoad
{
 [super viewDidLoad];

 UIImage* image = [UIImage imageNamed:@"lena.png"];
 // Convert UIImage* to cv::Mat
 UIImageToMat(image, cvImage);
 if (!cvImage.empty())
 {
 cv::Mat gray;
 // Convert the image to grayscale
 cv::cvtColor(cvImage, gray, CV_RGBA2GRAY);
 // Apply Gaussian filter to remove small edges
 cv::GaussianBlur(gray, gray,
 cv::Size(5, 5), 1.2, 1.2);

Instant OpenCV for iOS

19

 // Calculate edges with Canny
 cv::Mat edges;
 cv::Canny(gray, edges, 0, 50);
 // Fill image with white color
 cvImage.setTo(cv::Scalar::all(255));
 // Change color on edges
 cvImage.setTo(cv::Scalar(0, 128, 255, 255), edges);
 // Convert cv::Mat to UIImage* and show the resulting
image
 imageView.image = MatToUIImage(cvImage);
 }
}

Now run your application and check whether the application finds edges on the image correctly.

How it works...
Frameworks are intended to simplify the process of handling dependencies. They encapsulate
header and binary files, so the Xcode sees them, and you don't need to add all the paths
manually. Simply speaking, the iOS framework is just a specially structured folder containing
include files and static libraries for different architectures (for example, armv7, armv7s,
and x86). But Xcode knows where to search for proper binaries for each build configuration,
so this approach is the simplest way to link external library on the iOS. All dependencies are
handled automatically and added to the final application package.

Usually, iOS applications are written in Objective-C language. Header files have a *.h
extension and source files have *.m. Objective-C is a superset of C, so you can easily mix
these languages in one file. But OpenCV is primarily written in C++, so we need to use C++ in
the iOS project, and we need to enable support of Objective-C++. That's why we have set the
language property to Objective-C++. Source files in Objective-C++ language usually have the
*.mm extension.

To include OpenCV header files, we use the #import directive. It is very similar to #include
in C++, while there is one distinction. It automatically adds guards for the included file, while
in C++ we usually add them manually:

#ifndef __SAMPLE_H__
#define __SAMPLE_H__
…
#endif

In the code of the example, we just convert the loaded image from a UIImage object to
cv::Mat by calling the UIImageToMat function. Please be careful with this function,
because it entails a memory copy, so frequent calls to this function will negatively affect your
application's performance.

Instant OpenCV for iOS

20

Please note that this is probably the most important performance tip—to be
very careful while working with memory in mobile applications. Avoid memory
reallocations and copying as much as possible. Images require quite large
chunks of memory, and you should reuse them between iterations. For
example, if your application has some pipeline, you should preallocate all
buffers and use the same memory while processing new frames.

After converting images, we do some simple image processing with OpenCV. First, we convert
our image to the single-channel one. After that, we use the GaussianBlur filter to remove
small details. Then we use the Canny method to detect edges in the image. To visualize
results, we create a white image and change the color of the pixels that lie on detected edges.
The resulting cv::Mat object is converted back to UIImage and displayed on the screen.

There's more...
The following is additional advice.

Objective-C++
There is one more way to add support of Objective-C++ to your project. You should just change
the extension of the source files to .mm where you plan to use C++ code. This extension is
specific to Objective-C++ code.

Converting to cv::Mat
If you don't want to use UIImage, but want to load an image to cv::Mat directly, you can do
it using the following code:

// Create file handle
NSFileHandle* handle =
 [NSFileHandle fileHandleForReadingAtPath:filePath];
// Read content of the file
NSData* data = [handle readDataToEndOfFile];
// Decode image from the data buffer
cvImage = cv::imdecode(cv::Mat(1, [data length], CV_8UC1,
 (void*)data.bytes),
 CV_LOAD_IMAGE_UNCHANGED);

In this example we read the file content to the buffer and call the cv::imdecode function
to decode the image. But there is one important note; if you later want to convert cv::Mat
to the UIImage, you should change the channel order from BGR to RGB, as OpenCV's native
image format is BGR.

Instant OpenCV for iOS

21

Detecting faces with Cascade Classifier
(Intermediate)

In this recipe, we'll learn how to detect faces using the cv::CascadeClassifier class from
OpenCV. In order to do that, we will load an XML file with a trained classifier, use it to detect
faces, and then draw a rectangle over the detected face.

Getting ready
Source code for this recipe can be found in the Recipe04_DetectingFaces folder in the
code bundle that accompanies this book. For this recipe, you will need to download the XML
 file from the OpenCV sources at http://bit.ly/3848_FaceCascade. Alternatively, you can
find the file in the resources for this book. You can use the iOS Simulator to work on this recipe.

How to do it...
The following are the basic steps needed to accomplish the task:

1.	 Add an XML file with cascade to the application's resources.

2.	 Create the cv::CascadeClassifier class using the cascade file from resources.

3.	 Detect a face on an image.

4.	 Draw a rectangle over the detected face.

Let's implement the described steps:

1.	 You can add an XML file by using the Add Files to ... context menu described in
the Displaying an image from resources (Simple) recipe. Then you need to open
ViewController.h and add a field of the cv::CascadeClassifier type; this
will be our object detector:
@interface ViewController : UIViewController {
 cv::CascadeClassifier faceDetector;
}

2.	 The remaining steps may be implemented using the following code for the
viewDidLoad method. Please add it to your application, then run and check if
Lena's face is detected successfully:

- (void)viewDidLoad
{
 [super viewDidLoad];

 // Load cascade classifier from the XML file

Instant OpenCV for iOS

22

 NSString* cascadePath = [[NSBundle mainBundle]
 pathForResource:@"haarcascade_frontalface_
alt2"
 ofType:@"xml"];
 faceDetector.load([cascadePath UTF8String]);

 // Load image with face
 UIImage* image = [UIImage imageNamed:@"lena.png"];
 cv::Mat faceImage;
 UIImageToMat(image, faceImage);

 // Convert to grayscale
 cv::Mat gray;
 cvtColor(faceImage, gray, CV_BGR2GRAY);

 // Detect faces
 std::vector<cv::Rect> faces;
 faceDetector.detectMultiScale(gray, faces, 1.1,
 2, 0|CV_HAAR_SCALE_IMAGE,
cv::Size(30, 30));

 // Draw all detected faces
 for(unsigned int i = 0; i < faces.size(); i++)
 {
 const cv::Rect& face = faces[i];
 // Get top-left and bottom-right corner points
 cv::Point tl(face.x, face.y);
 cv::Point br = tl + cv::Point(face.width, face.height);

 // Draw rectangle around the face
 cv::Scalar magenta = cv::Scalar(255, 0, 255);
 cv::rectangle(faceImage, tl, br, magenta, 4, 8, 0);
 }

 // Show resulting image
 imageView.image = MatToUIImage(faceImage);
}

How it works...
The first steps of this example are similar to ones from previous recipes. You should create
an Xcode project, add the OpenCV framework, add a UIImageView component to the
storyboard, and load an input image from the project resources. We just add some more
complex OpenCV functionality to detect faces.

Instant OpenCV for iOS

23

In the next recipes, we will discuss how to detect faces in a live video stream, but right now,
let's try to do it for a static image. For this task, we use the cv::CascadeClassifier class.
The Haar-based OpenCV face detector was initially proposed by Paul Viola and later extended
by Rainer Lienhart. It is based on Haar features and allows finding some specific objects.
This method is the de facto standard for face detection tasks. The input XML file contains
parameters of such classifiers trained to detect frontal faces.

To load parameters, we need to convert the NSString object to std::string. In order
to do it, we use the UTF8String method that returns a null-terminated UTF-8 representation
of the NSString object.

After that, we can find faces on our image with the help of the detectMultiScale
method of the cv::CascadeClassifier class.

OpenCV function. This function receives the following parameters to configure the
detection stage:

ff scaleFactor: This specifies how much the image size is decreased at
each iteration.

ff minNeighbors: This specifies how many neighbors each candidate rectangle
should have to retain it. Increasing the value of this parameter helps to reduce
the number of false positives.

ff CV_HAAR_SCALE_IMAGE: This is a flag that specifies the algorithm to scale the
image rather than the detector. It helps to achieve the best possible performance.

ff minSize: This parameter specifies the minimum possible face size.

Detailed description of the function arguments you can be found in the OpenCV
documentation at http://bit.ly/3848_DetectMultiScale.

This function is parallelized with Grand Central Dispatch, so it will work faster on
multi-core devices.

Each detected rectangle is added to the resulting image with the cv::rectangle function.

There's more...
Now you can try to replace lena.png with your family photo or some other image with faces.

Object detection is a wide and deep subject, and we only scratched its surface in this recipe.
The following will give you some pointers if you want to know more.

Native iOS face detector
The iOS Core Image framework already contains a class for face detection called
CIDetector. So if you only need to detect faces, it can be appropriate. But the
cv::CascadeClassifier class has more options; it can be used to detect any
textured objects (with some assumptions) after training.

Instant OpenCV for iOS

24

Detecting other types of objects
OpenCV has several trained classifiers, including frontal and profile human faces,
individual facial features, silverware, and some others (more details can be found at
http://bit.ly/3848_Cascades). You should check the available classifiers, as
they might be useful in your future applications.

If there is no classifier for a particular type of object, you can always train your own,
following the instructions found at http://bit.ly/3848_TrainCascade. But please
note that training a good detector could be a challenging research task.

Tuning performance of the detector
Cascade Classifier may be too slow for real-time processing, especially on a mobile device.
But there are several ways to improve the situation. First of all, please note that downscaling
an image may not help, as the detectMultiScale method builds a pyramid of scales
depending on minSize and maxSize parameters. But you can tweak these parameters to
achieve better performance. Start from increasing the value of the first parameter. Next, you
can try to increase the scaleFactor parameter. Try to use values such as 1.2 or 1.3, but
please note that it may negatively affect the quality of detection!

Apart from parameter tuning, you can try more radical methods. First of all, check if LBP-
based cascade is available for your objects (http://bit.ly/3848_LBPCascades). Local
Binary Patterns (LBP) features use integer arithmetic; thus they are more efficient and the
detector usually works 2-3 times faster than using classic Haar-features (they use floating-
point calculations). Finally, you can try to skip the frames in the video stream and track
objects with Optical Flow between detections.

Printing a postcard (Intermediate)
In this recipe, we'll discuss how you can use your C++ classes from the Objective-C code.
We'll create a simple application that prints a pretty postcard using the image with a face.
We will also learn how to measure the processing time of your methods, so that you can
track their efficiency.

Instant OpenCV for iOS

25

The following screenshot shows the resulting postcard:

Getting ready
The source code for this recipe is in the Recipe05_PrintingPostcard folder in the
code bundle that accompanies this book, where you may find implementation of the
PostcardPrinter class and images that are going to be used in our application. You
can use the iOS Simulator to work on this recipe.

How to do it...
The following is how we can implement a postcard printing application:

1.	 Take the application skeleton from the previous recipe.

2.	 Add header and implementation files of your C++ class to the Xcode project.

3.	 Add the calling code for the postcard printing.

4.	 Add time measurements and logging for the printing function.

Instant OpenCV for iOS

26

Let's implement the described steps:

1.	 We will first create a new project for our application, and to save time, you can
use code from the previous recipe.

2.	 Next, we need to add PostcardPrinter.hpp header file with the following
class declaration:
class PostcardPrinter
{
public:
 struct Parameters
 {
 cv::Mat face;
 cv::Mat texture;
 cv::Mat text;
 };

 PostcardPrinter(Parameters& parameters);
 virtual ~PostcardPrinter() {}

 void print(cv::Mat& postcard) const;

protected:
 void markup();
 void crumple(cv::Mat& image, const cv::Mat& texture,
 const cv::Mat& mask = cv::Mat()) const;
 void printFragment(cv::Mat& placeForFragment,
 const cv::Mat& fragment) const;
 void alphaBlendC3(const cv::Mat& src, cv::Mat& dst,
 const cv::Mat& alpha) const;

 Parameters params_;
 cv::Rect faceRoi_;
 cv::Rect textRoi_;
};

3.	 Then, we need to implement all the methods of the PostcardPrinter class.
We'll consider only print, crumple, and printFragment methods, because
others are trivial.
void PostcardPrinter::printFragment(Mat& placeForFragment,
 const Mat& fragment) const
{
 // Get alpha channel

Instant OpenCV for iOS

27

 vector<Mat> fragmentPlanes;
 split(fragment, fragmentPlanes);
 CV_Assert(fragmentPlanes.size() == 4);
 Mat alpha = fragmentPlanes[3];
 fragmentPlanes.pop_back();
 Mat bgrFragment;
 merge(fragmentPlanes, bgrFragment);

 // Add fragment with crumpling and alpha
 crumple(bgrFragment, placeForFragment, alpha);
 alphaBlendC3(bgrFragment, placeForFragment, alpha);
}

void PostcardPrinter::print(Mat& postcard) const
{
 postcard = params_.texture.clone();

 Mat placeForFace = postcard(faceRoi_);
 Mat placeForText = postcard(textRoi_);

 printFragment(placeForFace, params_.face);
 printFragment(placeForText, params_.text);
}

void PostcardPrinter::crumple(Mat& image, const Mat& texture,
 const Mat& mask) const
{
 Mat relief;
 cvtColor(texture, relief, CV_BGR2GRAY);
 relief = 255 - relief;

 Mat hsvImage;
 cvtColor(image, hsvImage, CV_BGR2HSV);

 vector<Mat> planes;
 split(hsvImage, planes);
 subtract(planes[2], relief, planes[2], mask);
 merge(planes, hsvImage);

 cvtColor(hsvImage, image, CV_HSV2BGR);
}

Instant OpenCV for iOS

28

4.	 Now we're ready to use our class from Objective-C code. We will also measure how
long it takes to print the postcard and log this information to the console. Let's use
the following implementation of the viewDidLoad method:

- (void)viewDidLoad
{
 [super viewDidLoad];

 PostcardPrinter::Parameters params;

 // Load image with face
 UIImage* image = [UIImage imageNamed:@"lena.jpg"];
 UIImageToMat(image, params.face);

 // Load image with texture
 image = [UIImage imageNamed:@"texture.jpg"];
 UIImageToMat(image, params.texture);
 cvtColor(params.texture, params.texture, CV_RGBA2RGB);

 // Load image with text
 image = [UIImage imageNamed:@"text.png"];
 UIImageToMat(image, params.text, true);

 // Create PostcardPrinter class
 PostcardPrinter postcardPrinter(params);

 // Print postcard, and measure printing time
 cv::Mat postcard;
 int64 timeStart = cv::getTickCount();
 postcardPrinter.print(postcard);
 int64 timeEnd = cv::getTickCount();
 float durationMs =
 1000.f * float(timeEnd - timeStart) /
cv::getTickFrequency();
 NSLog(@"Printing time = %.3fms", durationMs);

 if (!postcard.empty())
 imageView.image = MatToUIImage(postcard);
}

You can now build and run your application to see the result.

Instant OpenCV for iOS

29

How it works...
You can see that the PostcardPrinter class is an ordinary C++ class, and it actually could
be used in any desktop application. We won't discuss its implementation in details, as it is not
iOS-specific and is implemented using simple OpenCV functions. We will only mention that the
crumpling effect is implemented by changing intensity values of images, and this is done in
HSV color space. We'll first calculate the value of relief using texture, and then subtract it
from the intensity plane of the image (value channel in HSV).

In viewDidLoad, we first load the images. You can note that the params.texture member
is converted to RGB color space to comply with the input format of PostcardPrinter.
But the params.text is loaded with the alpha channel, which is later used to avoid font
aliasing. The last Boolean argument in the UIImageToMat function indicates that we need
this image to be converted with alpha:

UIImageToMat(image, params.text, true);

Also note that C++ code can be seamlessly called from the Objective-C code. That's why in
viewDidLoad, we simply create a PostcardPrinter object and then call its methods.

Finally, note how time measurements are added. OpenCV's getTickCount and
getTickFrequency functions are used. The following line of code can be used to calculate
time in seconds, so we multiply it with 1000 to get the printing time in milliseconds.

float(timeEnd - timeStart) / cv::getTickFrequency();

Depending on your device, the time will vary, but it shouldn't exceed half a second, which is
good enough for our use case. Later, we will not use the getTickCount function directly,
rather we'll use helper macros:

 #define TS(name) int64 t_##name = cv::getTickCount()
 #define TE(name) printf("TIMER_" #name ": %.2fms\n", \
 1000.*((cv::getTickCount() - t_##name) / cv::getTickFrequency()))

It actually does the same measurement, but it greatly improves readability of the code under
inspection. It allows us to measure the working time in a simple manner as shown in the
following code:

 // Print postcard
 cv::Mat postcard;
 TS(PostcardPrinting);
 postcardPrinter.print(postcard);
 TE(PostcardPrinting);

Instant OpenCV for iOS

30

There's more...
Our PostcardPrinter class is quite simple, but you can use it to start a full-featured
application. You can add more textures, effects, and fonts, so users have more freedom
while designing their postcards. In the next recipe, we apply a cool vintage effect to the
photo, so it looks like a real poster from the XIX century. Its OpenCV implementation is
quite simple, so we leave it for self-study.

GIMP
The text for this recipe was rendered using the GIMP application, which is a free alternative
to Photoshop. We encourage you to get familiar with this tool (or with Photoshop), if you're
going to implement advanced photo effects. You can design beautiful textures and icons for
your application using GIMP.

Acceleration
iOS provides several frameworks that can be used for accelerating image processing
operations. The two most important ones are Accelerate (http://bit.ly/3848_
Accelerate) and CoreImage (http://bit.ly/3848_CoreImage). We will work
with Accelerate in the Using the Accelerate framework (Advanced) recipe, but we'll
provide only high-level information on CoreImage because of space limitations.

The CoreImage framework provides you with a set of functions that allow you to enhance,
filter, blend images, and even detect faces. This API is native for iOS, and it may use GPU for
acceleration. So, you may find CoreImage useful for your purposes. In fact, its functionality
intersects with that of OpenCV, and some photo processing applications can be developed
even without linking to OpenCV. But if you want to manually tweak your effects and
performance, OpenCV is the right choice.

Working with images in Gallery
(Intermediate)

In this recipe, we'll learn how to work with Gallery and will try to apply simple photo effects
from the previous recipe to an image from Gallery. Also, it is the first recipe where we meet
with the delegation pattern and actions (callbacks) for GUI elements.

Instant OpenCV for iOS

31

If you run the corresponding project, you will get the following result:

Getting ready
Source code for this recipe can be found in the Recipe06_WorkingWithGallery folder in
the code bundle that accompanies this book. You can use the iOS Simulator to work on this
recipe, but you will also need an image with a face in your Gallery. You can open the Safari
browser on the Simulator, copy lena.png from your PC using the drag-and-drop method,
then save it using the long mouse click.

How to do it...
The first steps are the same as in the previous recipes. We should create an Xcode project,
reference the OpenCV framework, add the UIImageView component, and copy files with
the postcard printing code.

Instant OpenCV for iOS

32

We are going to add the possibility to print a postcard with an image from Gallery (the image
should have face in it) and save the resulting image back to Gallery. The following are the
steps required to do it:

1.	 Add UIToolbar and two UIBarButtonItem components to the GUI.

2.	 Implement functions in our Controller that are relevant with needed interfaces.

3.	 Create actions to respond to button-clicks.

4.	 Finally, we will implement the printPostcard method that wraps the call to
PostcardPrinter class. But before the postcard printing, we will preprocess
the image with the preprocessFace method to add a vintage effect.

Let's implement the described steps:

1.	 We will first update our GUI. In order to do it, we should add the UIToolbar component
to the bottom part of the interface. As usual, we need to select the corresponding
storyboard file, choose the Toolbar component from the Objects list and drag it to the
View. This component already has one button. To rename it to Load, you should double-
click on it and enter new text. After that, we have to add a Bar Button Item component
from the Objects list for the second button and rename it to Save.

2.	 The following is a declaration for our Controller interface from the
ViewController.h file:
@interface ViewController :
 UIViewController<UIImagePickerControllerDelegate,
 UINavigationControllerDelegate,
 UIPopoverControllerDelegate>
{
 UIPopoverController* popoverController;
 UIImageView* imageView;
 UIImage* postcardImage;
 cv::CascadeClassifier faceDetector;
}

@property (nonatomic, strong) IBOutlet UIImageView* imageView;
@property (nonatomic, strong) IBOutlet UIToolbar* toolbar;
@property (nonatomic, strong) UIPopoverController*
popoverController;
@property (nonatomic, weak) IBOutlet UIBarButtonItem* loadButton;
@property (nonatomic, weak) IBOutlet UIBarButtonItem* saveButton;

-(IBAction)loadButtonPressed:(id)sender;
-(IBAction)saveButtonPressed:(id)sender;

- (UIImage*)printPostcard:(UIImage*)image;

@end

Instant OpenCV for iOS

33

3.	 Then we should connect the IBOutlet properties of our Controller with
corresponding components on GUI. Next, we'll consider implementation for some
methods of the ViewController class needed to load images from Gallery:
- (void)imagePickerController: (UIImagePickerController*)picker
 didFinishPickingMediaWithInfo:(NSDictionary *)info
{
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==

UIUserInterfaceIdiomPad)
 {
 [popoverController dismissPopoverAnimated:YES];
 }
 else
 {
 [picker dismissViewControllerAnimated:YES
 completion:nil];
 }

 UIImage* temp =
 [info objectForKey:@"UIImagePickerControllerOriginalIma
ge"];

 postcardImage = [self printPostcard:temp];
 imageView.image = postcardImage;

 [saveButton setEnabled:YES];
}

-(void)imagePickerControllerDidCancel:
 (UIImagePickerController *)picker
{
 if ([[UIDevice currentDevice] userInterfaceIdiom] ==

UIUserInterfaceIdiomPad)
 {
 [popoverController dismissPopoverAnimated:YES];
 }
 else
 {
 [picker dismissViewControllerAnimated:YES completion:nil];
 }
}

Instant OpenCV for iOS

34

4.	 In order to add actions (callbacks) to our buttons, we have to implement two methods
describing the response to clicks. You also should connect these functions with
correspondent UI components:
- (IBAction)loadButtonPressed:(id)sender
{
 if (![UIImagePickerController isSourceTypeAvailable:
 UIImagePickerControllerSourceTypePhotoLibrary])
 return;
 UIImagePickerController* picker =
 [[UIImagePickerController alloc] init];
 picker.delegate = self;
 picker.sourceType =
 UIImagePickerControllerSourceTypePhotoLibrary;

 if ([[UIDevice currentDevice] userInterfaceIdiom] ==

UIUserInterfaceIdiomPad)
 {
 if ([self.popoverController isPopoverVisible])
 {
 [self.popoverController dismissPopoverAnimated:YES];
 }
 else
 {
 self.popoverController =
 [[UIPopoverController alloc]
 initWithContentViewController:picker];

 popoverController.delegate = self;

 [self.popoverController
 presentPopoverFromBarButtonItem:sender
 permittedArrowDirections:UIPopoverArrowDirection
Up
 animated:YES];
 }
 }
 else
 {
 [self presentViewController:picker
 animated:YES
 completion:nil];
 }
}

Instant OpenCV for iOS

35

- (IBAction)saveButtonPressed:(id)sender
{
 if (postcardImage != nil)
 {
 UIImageWriteToSavedPhotosAlbum(postcardImage, self,
 nil, NULL);

 // Alert window
 UIAlertView *alert = [UIAlertView alloc];
 alert = [alert initWithTitle:@"Status"
 message:@"Saved to the Gallery!"
 delegate:nil
 cancelButtonTitle:@"Continue"
 otherButtonTitles:nil];
 [alert show];
 }
}

5.	 Finally, we should implement the printPostcard method that wraps the call to
the PostcardPrinter class on the Objective-C side. You can do it yourself, similar
to previous recipe. Please note that we also need to use the face detector to cut the
face from the image and call the preprocessFace method to quantize intensity
levels and add a vintage effect to the image.

The remaining functions (for example, viewDidLoad) were not changed much, so we'll not
explain them in detail.

How it works...
For loading images from Gallery, we have to use the UIImagePickerController
class. It provides user interfaces for choosing images and videos from your device. In
order to use it, we should implement several protocols in our ViewController class,
so it becomes a delegate that conforms to these protocols. This way, it follows the
so-called delegation mechanism that is widely used in iOS. It allows you to avoid inheriting
from base classes, and instead, the delegation requires implementing a protocol with
some particular methods. In our recipe, we will use three delegates for taking images from
Gallery: UIImagePickerControllerDelegate, UINavigationControllerDelegate,
and UIPopoverControllerDelegate. To implement the first protocol, we should
add the imagePickerControllerDidCancel method that will be called if the user
presses the Cancel button before choosing an image in Gallery. In our recipe, we are
just closing the window with the user's photo in this case. We should also implement the
didFinishPickingMediaWithInfo method that describes the application behavior
if the user selects an image. In our case, we call the printPostcard method for the
selected image and store the result to the image global variable.

Instant OpenCV for iOS

36

As you may have noticed, all these functions have a conditional statement that checks
whether we use iPad or iPhone. It follows the UI guidelines for iOS. On iPhone and iPod
devices, it is common to use a full screen window to show photos from Gallery, but on
iPad, we have to use pop-up windows. So, to close the window, we should use two different
implementations for corresponding classes of devices.

In the action of the Load button, we should create a UIImagePickerController object
and set the delegate property of this object to our ViewController class. It allows
us to inform our Controller about the changes and invoke the created implementation of
the protocol. In the case of iPhone/iPod, we should just present the Controller with the
presentViewController method. Implementation for tablets is a bit complicated;
we should create a UIPopoverController object and initialize it with the previously
created UIImagePickerController object. In order to do it, we will initialize the self.
popoverController field that is already contained in our class, because we're using
delegation from UIPopoverControllerDelegate.

It is our first recipe, where we were working with buttons. Here we deal with another important
Cocoa design pattern called target-action. Actions are messages (the action) that are sent
to the Controller (the target) on corresponding button-clicks. In order to process button-clicks,
one should catch the corresponding events. For that purpose, you should use the IBAction
keyword. IBAction is a special macro that resolves to void, but it denotes a method that
can be linked with UI components.

There's more...
If you want to know more about the delegation and actions, we recommend you to
read the Cocoa's Communicating with Objects guide at http://bit.ly/3848_
CommunicatingWithObjects.

All the application logic is now in place, but we'll add some features to make our application
more user-friendly.

Device orientation
Our postcards assume to be shown in the portrait orientation of a device. But, by default,
GUI will be rotated if you rotate your device, and the image will be inadequately stretched.
To avoid this effect, we can restrict the usage of undesirable orientations.

In order to do it, we can add the following function to our implementation of the
ViewController class:

- (NSInteger)supportedInterfaceOrientations
{
 // Only portrait orientation
 return UIInterfaceOrientationMaskPortrait;
}

Instant OpenCV for iOS

37

In this function, you should return a bit mask, which is a result of the bitwise OR operation for
the desired orientations flags.

Disabling buttons
In our recipe, we are using the Save button to write the resulting image to Gallery. But we can't
do it until we print our first postcard. In this situation, we can disable the button before the
first image is chosen. To deactivate the button, we should use the setEnabled method:

[saveButton setEnabled:NO];

Applying a retro effect (Intermediate)
In this recipe, we'll learn how one can apply a custom photo effect to images from Gallery.
We will implement a "retro" filter with OpenCV, so that the photographs look old, as shown
in the following screenshot:

Getting ready
The source code for this recipe can be found in the Recipe07_ApplyingRetroEffect
folder in the code bundle that accompanies this book. You can use the iOS Simulator to
work on this recipe.

Instant OpenCV for iOS

38

How to do it...
This recipe heavily relies on the previous one, as we're going to implement the same
workflow: loading images from Gallery, processing them with OpenCV, and displaying
them on the screen.

The following are the steps required to apply our filter to an image from Gallery:

1.	 First of all, we need to implement our custom filter. We'll create the RetroFilter
class in C++ for that purpose.

2.	 Then we have to modify the ViewController class properly, by adding appropriate
fields and its initialization in the viewDidLoad method.

3.	 Finally, we'll implement the applyFilter method that wraps the call to the
RetroFilter class.

Let's implement the described steps:

1.	 The following is a declaration from the RetroFilter.hpp file for a class that is
going to be used for photo stylization:
class RetroFilter
{
public:
 struct Parameters
 {
 cv::Size frameSize;
 cv::Mat fuzzyBorder;
 cv::Mat scratches;
 };

 RetroFilter(const Parameters& params);
 virtual ~RetroFilter() {};
 void applyToPhoto(const cv::Mat& frame, cv::Mat& retroFrame);
 void applyToVideo(const cv::Mat& frame, cv::Mat& retroFrame);

protected:
 Parameters params_;

 cv::RNG rng_;
 float multiplier_;

 cv::Mat borderColor_;
 cv::Mat scratchColor_;

 std::vector<cv::Mat> sepiaPlanes_;
 cv::Mat sepiaH_;
 cv::Mat sepiaS_;
};

Instant OpenCV for iOS

39

2.	 We'll consider implementations for two main methods from the RetroFilter.cpp
file. The following is a constructor for the class:
RetroFilter::RetroFilter(const Parameters& params) : rng_(time(0))
{
 params_ = params;

 multiplier_ = 1.0;

 borderColor_.create(params_.frameSize, CV_8UC1);
 scratchColor_.create(params_.frameSize, CV_8UC1);

 sepiaH_.create(params_.frameSize, CV_8UC1);
 sepiaH_.setTo(Scalar(19));
 sepiaS_.create(params_.frameSize, CV_8UC1);
 sepiaS_.setTo(Scalar(78));
 sepiaPlanes_.resize(3);
 sepiaPlanes_[0] = sepiaH_;
 sepiaPlanes_[1] = sepiaS_;

 resize(params_.fuzzyBorder, params_.fuzzyBorder,
 params_.frameSize);

 if (params_.scratches.rows < params_.frameSize.height ||
 params_.scratches.cols < params_.frameSize.width)
 {
 resize(params_.scratches, params_.scratches,
 params_.frameSize);
 }
}

3.	 And the following is the implementation of the main processing method:
void RetroFilter::applyToPhoto(const Mat& frame, Mat& retroFrame)
{
 Mat luminance;
 cvtColor(frame, luminance, CV_BGR2GRAY);

 // Add scratches
 Scalar meanColor = mean(luminance.row(luminance.rows / 2));
 scratchColor_.setTo(meanColor * 2.0);
 int x = rng_.uniform(0, params_.scratches.cols - luminance.
cols);
 int y = rng_.uniform(0, params_.scratches.rows - luminance.
rows);
 cv::Rect roi(cv::Point(x, y), luminance.size());

Instant OpenCV for iOS

40

 scratchColor_.copyTo(luminance, params_.scratches(roi));

 // Add fuzzy border
 borderColor_.setTo(meanColor * 1.5);
 alphaBlendC1(borderColor_, luminance, params_.fuzzyBorder);

 // Apply sepia-effect
 sepiaPlanes_[2] = luminance + 20;
 Mat hsvFrame;
 merge(sepiaPlanes_, hsvFrame);
 cvtColor(hsvFrame, retroFrame, CV_HSV2RGB);
}

4.	 On the Objective-C side, we need to add the RetroFilter::Parameters
member to the ViewController class and the applyFilter method with
the following implementation:

- (UIImage*)applyFilter:(UIImage*)inputImage;
{
 cv::Mat frame;
 UIImageToMat(inputImage, frame);

 params.frameSize = frame.size();
 RetroFilter retroFilter(params);

 cv::Mat finalFrame;
 retroFilter.applyToPhoto(frame, finalFrame);

 return MatToUIImage(finalFrame);
}

The remaining Objective-C code is based on the previous recipe, so it is not shown here.

How it works...
The only new information in this recipe is the implementation of the RetroFilter class.
It uses popular OpenCV functions, and we will explain only its most interesting part—the
applyToPhoto method.

This method applies a sequence of processing steps that help us to achieve a "retro"
effect. The key idea is to convert an image to a monochrome color space, do all the
processing in it, and eventually convert it back to RGB with the sepia effect.

Instant OpenCV for iOS

41

Both scratches and borders are rendered with a color that depends on a mean color of the
image. To avoid costly analysis of the whole image, we only look into middle row of the image:

Scalar meanColor = mean(luminance.row(luminance.rows / 2));

You can also see that we are using the cv::RNG class (initialized with rng_(time(0))) to
choose a region on the image with scratches randomly. This allows us to get different patterns
of scratches for different images.

Finally, we assemble back the channels of our image. We add a value of 20 to the luminance
plane, so the contrast is artificially decreased. After that, we use the OpenCV merge function
to pack color planes into the single image, then convert it to the RGB color space with the help
of the cvtColor function.

There's more...
You can try to use your own images with scratches and borders. As before, we recommend
you to use GIMP software to edit images. But please note that both scratches.png and
fuzzyBorder.png should be one-channel images, because they are used as a mask and
alpha channel correspondingly.

Taking photos from camera (Intermediate)
In this recipe, we will learn how we can capture images the camera. We'll use the
CvPhotoCamera class, which is a part of OpenCV, and apply our retro effect from
the previous recipe.

Getting ready
For this recipe, you will need a real iOS device, because we're going to take photos.
The source code can be found in the Recipe08_TakingPhotosFromCamera folder
in the code bundle that accompanies this book.

How to do it...
The following are the steps required to apply our filter to a photo, taken with camera app:

1.	 The ViewController interface should implement the protocol
from CvPhotoCameraDelegate, and should have a member of
the CvPhotoCamera* type.

2.	 You will also need a couple of buttons, one to start capturing (stream preview
video to display), and another for taking a photo.

Instant OpenCV for iOS

42

3.	 Then we have to initialize everything in the viewDidLoad method as usual.

4.	 The last step will be the processing of the captured frame in the applyEffect
method.

Let's implement the described steps:

1.	 The iOS part of the OpenCV library has two classes for working with a camera:
CvPhotoCamera and CvVideoCamera. The first one was designed to get static
images, and we'll get familiar with it in this recipe. We should add support for a
certain protocol in our Controller class for working with a camera. In our case, we
use the delegate of CvPhotoCamera. The ViewController class accesses the
image through the delegation from CvPhotoCameraDelegate:
@interface ViewController : UIViewController<CvPhotoCameraDelega
te>
{
 CvPhotoCamera* photoCamera;
 UIImageView* resultView;
 RetroFilter::Parameters params;
}

@property (nonatomic, strong) CvPhotoCamera* photoCamera;
@property (nonatomic, strong) IBOutlet UIImageView* imageView;
@property (nonatomic, strong) IBOutlet UIToolbar* toolbar;
@property (nonatomic, weak) IBOutlet
 UIBarButtonItem* takePhotoButton;
@property (nonatomic, weak) IBOutlet
 UIBarButtonItem* startCaptureButton;

-(IBAction)takePhotoButtonPressed:(id)sender;
-(IBAction)startCaptureButtonPressed:(id)sender;

- (UIImage*)applyEffect:(UIImage*)image;

@end

2.	 As you can see, we need to add a CvPhotoCamera* property in order to work with
a camera. We do also add two buttons to the UI. Thus, we add two corresponding
properties and two methods with IBAction macros. As done before, you should
connect these properties and actions with the corresponding GUI elements with
Assistant editor and storyboard files.

3.	 In order to work with a camera, you should add additional frameworks to the project:
AVFoundation, Accelerate, AssetsLibrary, CoreMedia, CoreVideo, CoreImage,
QuartzCore. The simplest way to do this is using project properties by navigating to
Project | Build Phases | Link Binary With Libraries.

Instant OpenCV for iOS

43

4.	 In the viewDidLoad method, we should initialize camera parameters.
photoCamera = [[CvPhotoCamera alloc]
 initWithParentView:imageView];
photoCamera.delegate = self;
photoCamera.defaultAVCaptureDevicePosition =
 AVCaptureDevicePositionFront;
photoCamera.defaultAVCaptureSessionPreset =
 AVCaptureSessionPresetPhoto;
photoCamera.defaultAVCaptureVideoOrientation =
 AVCaptureVideoOrientationPortrait;

5.	 We'll use two buttons to control the camera. The first one will have a Start
capture caption and we'll use it to begin capturing:
-(IBAction)startCaptureButtonPressed:(id)sender;
{
 [photoCamera start];

 [self.view addSubview:imageView];
 [takePhotoButton setEnabled:YES];
 [startCaptureButton setEnabled:NO];
}

6.	 In order to be compliant with the protocol of CvPhotoCameraDelegate,
we should implement two methods inside the ViewController class:
- (void)photoCamera:(CvPhotoCamera*)camera
 capturedImage:(UIImage *)image;
{
 [camera stop];
 resultView = [[UIImageView alloc]
 initWithFrame:imageView.bounds];

 UIImage* result = [self applyEffect:image];

 [resultView setImage:result];
 [self.view addSubview:resultView];

 [takePhotoButton setEnabled:NO];
 [startCaptureButton setEnabled:YES];
}

- (void)photoCameraCancel:(CvPhotoCamera*)camera;
{
}

Instant OpenCV for iOS

44

7.	 Finally, we retrieve the picture in the Take photo button's action. In this callback,
we call the camera method for taking pictures:
-(IBAction)takePhotoButtonPressed:(id)sender;
{
 [photoCamera takePicture];
}

8.	 Finally, we should implement the applyEffect function that wraps the call to the
RetroFilter class on the Objective-C side, as discussed in the previous recipe.

How it works...
In order to work with a camera on an iOS device using OpenCV classes, you need to initialize
the CvPhotoCamera object first and set its parameters. This is done in the viewDidLoad
method that is called once when the View is loaded onscreen. In the initialization code, we
should specify what GUI component will be used to preview the camera capture. In our case,
we'll use UIImageView as we did before.

Our main UIImageView component will be used to show the video preview from the camera
and help users to take a good photo. Because our app also needs to display the final result on
the screen, we create another UIImageView to display the processed image. In order to do it,
we can create the second component right from the code:

resultView = [[UIImageView alloc]
 initWithFrame:imageView.bounds];
UIImage* result = [self applyEffect:image];
[resultView setImage:result];
[self.view addSubview:resultView];

In this code, we create the UIImageView component with the same size as that of manually
added imageView property. After that, we use the addSubview method of the main View to
add newly created components to our GUI. If we want see the camera preview results again,
we should use the same method for the imageView property:

[self.view addSubview:imageView];

There are three important parameters for camera: defaultAVCaptureDevicePosition,
defaultAVCaptureSessionPreset, and defaultAVCaptureVideoOrientation. The
first one is designed to choose between front and back cameras of the device. The second
one is used to set the image resolution. The third parameter allows you to specify the device
orientation during the capturing process.

Instant OpenCV for iOS

45

There are many possible values for the resolution; some of them are as follows:

ff AVCaptureSessionPresetHigh

ff AVCaptureSessionPresetMedium

ff AVCaptureSessionPresetLow

ff AVCaptureSessionPreset352x288

ff AVCaptureSessionPreset640x480

For capturing static, high-resolution images, we recommend using the value of
AVCaptureSessionPresetPhoto. The resulting resolution depends on your device, but it
will be the largest possible resolution.

In order to start the capture process, we should call the start method of the camera object.
In our sample, we'll do it in the button's action. After clicking on the button, the user will see
the camera image on the screen and will be able to click on the Take photo button that calls
the takePicture method.

The CvPhotoCameraDelegate camera protocol contains only one important method—
capturedImage. It is executed when somebody calls the takePicture function and allows
you to get the current frame as the function argument.

If you want to stop the camera capturing process, you should call the stop method.

There's more...
If you want to start capturing at the time the application is launched, you have to call the
start method inside viewDidAppear:

- (void)viewDidAppear:(BOOL)animated
{
 [photoCamera start];
}

Instant OpenCV for iOS

46

Creating a static library (Intermediate)
In this recipe we will learn how to create a static library for use in iOS applications. This is one
of the classic types, and can prove as a convenient way to share your computer vision code
between multiple platforms, including desktop ones. In addition to library and headers, we will
also put images to the resources of the project. Our overall goal is to build a reusable library
that could be linked from multiple iOS projects. The following is what it looks like in Xcode:

Getting ready
The source code for this recipe is available in the Recipe09_CreatingStaticLibrary
and CvEffects folders in the code bundle that accompanies this book. You can use the iOS
Simulator to work on this recipe.

Instant OpenCV for iOS

47

How to do it...
This recipe is actually a refactoring of our Recipe05_PrintingPostcard project. We will
split it into two, one will be a core computer vision library written in C++, and the second will
be an iOS application, written in Objective-C.

The following is the high-level description of the required steps:

1.	 Create a new project of the Cocoa Touch Static Library type.

2.	 Reference the library project from your application project.

3.	 Move the source files of the PostcardPrinter class to the library project.

4.	 Add a reference to the OpenCV framework in the library project.

5.	 Move the images to the same project.

6.	 Configure your application to link the library.

7.	 Configure the application to use resources from the library project.

Let's implement the described steps:

1.	 First of all, we'll create a Cocoa Touch Static Library project in Xcode. Give it the
name CvEffects, and delete the autogenerated CvEffects.h and CvEffects.m
files. We'll continue to work with this project from the main application workspace, so
now close library project in Xcode.

2.	 Now we'll add a reference to the created static library project to our application
project. Create a copy of the Recipe05_PrintingPostcard folder in Finder, and
then open the project in Xcode. Now you need to drag your CvEffects.xcodeproj
from the Finder into the Project Navigator Area of the Xcode project.

3.	 Now select both PostcardPrinter.hpp and PostcardPrinter.cpp and
drag them to the CvEffects group that is located under CvEffects.xcodeproj. In
the appeared window, check both Copy items into the destination group's folder
and Add to targets checkboxes. Now move the same source files to trash from the
application project.

Instant OpenCV for iOS

48

4.	 In order to make the header file visible to the application project, we need to set
up its copying during build. Open the Build Phases settings window of CvEffects.
xcodeproj and expand the Copy Files build phase. Then add PostcardPrinter.
hpp to the list, as shown in the following screenshot:

Please note that if you're going to add new classes to the library project,
they will be not visible in your main application project until you set up the
copying of the headers. So, every time you update the library project, you
need to update this list of public headers and rebuild the project.

5.	 Now add the reference to OpenCV framework as we did in the previous recipes. In the
library project, create a new group called Images. Then in the application project,
select all the images needed for postcard printing: lena.jpg, texture.jpg, and
text.png, and drag them to the Images group. Make sure that you've checked the
Copy items into the destination group's folder checkbox and unchecked the Add to
targets checkbox. Now, move these images to trash from the application project.

6.	 Our library is configured properly, and it's time to link it from our application. First of
all, you need to update your import to the following line:
#import "CvEffects/PostcardPrinter.hpp"

7.	 Then you have to open the Build Phases settings of the Recipe09_
CreatingStaticLibrary.xcodeproj project, expand the Link Binary With
Libraries phase, and add the libCvEffects.lib library, as shown in
the following screenshot:

Instant OpenCV for iOS

49

8.	 Finally, you need to add references to images. First, create the Images group as
a subgroup of Recipe09_CreatingStaticLibrary.xcodeproj. Then select all three
images in the library project, and drag them to the created Images group. In the
window that appears, uncheck the Copy items into the destination group's folder
checkbox (as we want application to reference images from the library project), and
check the Add to targets checkbox.

The setup is complete; now you can build and run the application.

How it works...
The static library project on iOS doesn't differ much from the static libraries for other
platforms, so we'll not dig deeper into this subject. As you can see, such project type
allows you not only to keep the source files, but also to keep the images and other
resources. This is a good opportunity to reduce duplication in your code base.

There's more...
For a more detailed introduction into static libraries in iOS, you can refer to the official
documentation at http://bit.ly/3848_iOSStaticLibraries.

A static library is a good way to reuse your code between projects, but there are some
additional opportunities for developers. Let's discuss them.

Instant OpenCV for iOS

50

Cross-platform development
The described approach allows you to isolate the computer vision logic from the user interface
and user interaction logic. This allows you to reuse your code in other iOS projects, but more
importantly, you can also use the same library code on multiple platforms, including desktop.
This could significantly simplify your development and debugging processes. It is generally a
good practice to initially develop the computer vision logic on a desktop computer, because
debugging may be a tricky problem.

Frameworks
One of drawbacks of static libraries is that they require some work from users, as they need
to add header files and the library to the linking process. iOS provides a more convenient way
when you wrap your code into a framework. As a result, user just points to the framework
in the Xcode, and all dependencies are added automatically. This is actually how OpenCV
is distributed. We will not cover the creation of frameworks in this book, but please keep in
mind that if you want to distribute your libraries, you should consider this approach, as it
simplifies the life of your users. The Xcode community has created several Xcode templates
that could help you start; they can be found at https://github.com/kstenerud/iOS-
Universal-Framework.

Capturing a video from camera (Simple)
In this recipe, we will use the CvVideoCamera class to capture live video from camera.

Getting ready
The source code can be found in the Recipe10_CapturingVideo folder in the code
bundle that accompanies this book. For this recipe, you can't use Simulator, as it doesn't
support camera.

How to do it...
The high-quality camera, in the latest iOS devices, is one of important factors of the popularity
of these devices. The ability to capture and encode H.264 high-definition video with hardware
acceleration was accepted with great enthusiasm by users and developers.

Most of the functions related to communicating with camera are included in the AVFoundation
framework. This framework contains a lot of simple and easy-to-use classes for taking photos
and videos. But setting up a camera, retrieving frames, displaying them, and handling rotations,
take a lot of code. So, in this recipe, we will use the CvVideoCamera class from OpenCV, which
encapsulates the functionality of the AVFoundation framework.

Instant OpenCV for iOS

51

The following are the steps required to capture video on iOS:

1.	 The ViewController interface should implement the protocol
from CvVideoCameraDelegate, and should have a member of
the CvVideoCamera* type.

2.	 You will also need a couple of buttons, one to start capturing process
(stream preview video to display), and second to stop the process.

3.	 Then we have to initialize everything in the viewDidLoad method as usual.

4.	 Finally, we'll implement the camera control with GUI buttons.

Let's implement the described steps:

1.	 Similar to the Taking photos from camera (Intermediate) recipe, in order to work with
camera, we need to implement a specific protocol (CvVideoCameraDelegate) in
our ViewController class. We also should include the special header file with
interfaces of the OpenCV camera classes.
#import <opencv2/highgui/ios.h>

@interface ViewController : UIViewController<CvVideoCameraDelega
te>
{
 CvVideoCamera* videoCamera;
 BOOL isCapturing;
}

@property (nonatomic, strong) CvVideoCamera* videoCamera;
@property (nonatomic, strong) IBOutlet UIImageView* imageView;
@property (nonatomic, strong) IBOutlet UIToolbar* toolbar;
@property (nonatomic, weak) IBOutlet
 UIBarButtonItem* startCaptureButton;
@property (nonatomic, weak) IBOutlet
 UIBarButtonItem* stopCaptureButton;

-(IBAction)startCaptureButtonPressed:(id)sender;
-(IBAction)stopCaptureButtonPressed:(id)sender;

@end

Instant OpenCV for iOS

52

2.	 We will need two buttons, so we have to add two corresponding properties and two
methods with IBAction macros. As before, you should connect these properties and
actions with corresponding GUI elements using Assistant editor and storyboard files:

3.	 In order to work with the camera, you should add additional frameworks to the
project: AVFoundation, Accelerate, AssetsLibrary, CoreMedia, CoreVideo, CoreImage,
and QuartzCore. The simplest way to do this is using project properties by navigating
to Project | Build Phases | Link Binary With Libraries.

4.	 In the viewDidLoad method, we should initialize the camera parameters:
- (void)viewDidLoad
{
 [super viewDidLoad];

 self.videoCamera = [[CvVideoCamera alloc]
 initWithParentView:imageView];
 self.videoCamera.delegate = self;
 self.videoCamera.defaultAVCaptureDevicePosition =
 AVCaptureDevicePositionFront;

Instant OpenCV for iOS

53

 self.videoCamera.defaultAVCaptureSessionPreset =
 AVCaptureSessionPreset640x480;
 self.videoCamera.defaultAVCaptureVideoOrientation =
 AVCaptureVideoOrientationPortrait;
 self.videoCamera.defaultFPS = 30;

 isCapturing = NO;
}

5.	 We'll use the first button with the Start capture caption to begin capturing from
camera, and the other one with the Stop capture caption to stop:
-(IBAction)startCaptureButtonPressed:(id)sender
{
 [videoCamera start];
 isCapturing = YES;
}

-(IBAction)stopCaptureButtonPressed:(id)sender
{
 [videoCamera stop];
 isCapturing = NO;
}

6.	 To monitor the status of the capturing process, we'll use the isCapturing variable,
which would be set to YES when capturing is active and NO otherwise.

7.	 According to the CvVideoCameraDelegate protocol, our ViewController class
needs to implement a processImage method (handle the processImage message).
- (void)processImage:(cv::Mat&)image
{
 // Do some OpenCV processing with the image
}

8.	 Finally, you can add some code to this method for processing video on the fly; we will
do it in another recipe.

How it works...
As we mentioned earlier, the iOS part of the OpenCV library has two classes for working with
camera: CvPhotoCamera and CvVideoCamera. The difference between the two classes
is rather conventional. The first one was designed to only capture static images and you
can process images only after capturing them (offline mode). The other class provides more
opportunities. It can capture video, process it on the fly, and save the processed stream as
an H.264 video file. Those classes have a quite similar interface and are inherited from the
common CvAbstractCamera ancestor.

Instant OpenCV for iOS

54

The CvVideoCamera class is easy to use. You can leave the default values for resolution,
frames-per-second (FPS), and so on, or customize them when needed. The parameters are the
same as the ones in the CvPhotoCamera class; however, there is one new parameter called
defaultFPS. Usually, this value is chosen between 20 and 30; 30 being standard for video.

Previously, we recommended using AVCaptureSessionPresetPhoto as a resolution
parameter of the CvPhotoCamera class. In case of video capturing, the better way is to
choose a smaller resolution. In order to do so, you can use one of the fixed resolutions (for
example, AVCaptureSessionPreset640x480, AVCaptureSessionPreset1280x720,
and so on) or one of the relative ones (AVCaptureSessionPresetHigh,
AVCaptureSessionPresetMedium, and AVCaptureSessionPresetLow). The resulting
resolution in the latter case will depend on the respective device and camera. Some of the
values are listed in the following table:

Preset iPhone 3G iPhone 3GS iPhone 4
back

iPhone 4 front

AVCaptureSession
PresetHigh

400 x 304 640 x 480 1280 x 720 640 x 480

AVCaptureSession
PresetMedium

400 x 304 480 x 360 480 x 360 480 x 360

AVCaptureSession
PresetMedium

400 x 304 192 x 144 192 x 144 192 x 144

Using the lowest possible resolution and reasonable frame rate can save
a lot of power and make apps more responsive. So, set up your camera
preview resolution and FPS to the lowest reasonable values.

To work with camera on an iOS device using the OpenCV class, you should first initialize the
CvVideoCamera object and set its parameters; you can do it in the viewDidLoad method.

In order to start the capturing process, we should call the start method of the camera
object. In our sample, we'll do it in the button's actions (callback functions). After pressing
the button, the user will see the camera preview on the screen. In order to stop capturing, you
should call the stop method. You should also implement the processImage method that
allows you to process camera images on the fly; this method will be called for each frame. Its
input parameter is already converted to cv::Mat that simplifies calling the OpenCV functions.

It is also recommended to stop the camera when the application is closing. Add the
following code to guarantee that the camera stops in case the user doesn't click on the
Stop capture button:

- (void)viewDidDisappear:(BOOL)animated
{
 [super viewDidDisappear:animated];

Instant OpenCV for iOS

55

 if (isCapturing) {
 [videoCamera stop];
 }
}

There's more...
CvVideoCamera simply wraps AVFoundation functions. So, if you need more control on the
camera, you should use this framework directly. The other way is to add OpenCV classes for
working with the camera to your project directly. For that purpose, you should copy cap_ios_
abstract_camera.mm, cap_ios_photo_camera.mm, cap_ios_video_camera.mm, and
cap_ios.h from the highgui module and modify the included files. You will need to rename
the classes to avoid conflict with the classes of OpenCV.

Real-time video processing on mobile devices is often a computationally intensive task, so
it is recommended to use dedicated frameworks, such as Accelerate and CoreImage. Such
frameworks are highly optimized and accelerated with special hardware, so you can expect
decent processing time and significant power savings.

Control advanced camera settings
(Advanced)

In computer vision, we often should calibrate the camera of a device and find its intrinsic
and extrinsic parameters (pinhole camera model). In order to do this, we should have
the possibility to lock some camera settings (for example, focus) to calculate the camera
parameters as accurately as possible. In this recipe, we'll consider some advanced settings
provided by the CvVideoCamera class that can help you during the calibration process.

Getting ready
We will use the Recipe10_CapturingVideo project as a starting point, trying to add
more control over the iOS camera. The source code can be found in the Recipe11_
AdvancedCameraControl folder in the code bundle that accompanies this book. For this
recipe you can't use Simulator, as it doesn't support camera.

How to do it...
The following are the required steps:

1.	 Add four buttons to our GUI to control the focus, exposure, white balance,
and camera rotation.

2.	 Then implement actions for all buttons.

Instant OpenCV for iOS

56

Let's implement the described steps:

1.	 Similarly to previous recipe, we should implement basic functions to work with the
video camera and add four more buttons to our UI:

#import <opencv2/highgui/ios.h>

@interface ViewController : UIViewController<CvVideoCameraDelega
te>
{
 CvVideoCamera* videoCamera;
 BOOL isCapturing;
 BOOL isFocusLocked, isExposureLocked, isBalanceLocked;
}

@property (nonatomic, strong) CvVideoCamera* videoCamera;

Instant OpenCV for iOS

57

@property (nonatomic, strong) IBOutlet UIImageView* imageView;
@property (nonatomic, strong) IBOutlet UIToolbar* toolbar;
@property (nonatomic, weak) IBOutlet
 UIBarButtonItem* startCaptureButton;
@property (nonatomic, weak) IBOutlet
 UIBarButtonItem* stopCaptureButton;

@property (nonatomic, weak) IBOutlet
 UIBarButtonItem* lockFocusButton;
@property (nonatomic, weak) IBOutlet
 UIBarButtonItem* lockExposureButton;
@property (nonatomic, weak) IBOutlet
 UIBarButtonItem* lockBalanceButton;
@property (nonatomic, weak) IBOutlet
 UIBarButtonItem* rotationButton;

-(IBAction)startCaptureButtonPressed:(id)sender;
-(IBAction)stopCaptureButtonPressed:(id)sender;

- (IBAction)actionLockFocus:(id)sender;
- (IBAction)actionLockExposure:(id)sender;
- (IBAction)actionLockBalance:(id)sender;

- (IBAction)rotationButtonPressed:(id)sender;

@end

2.	 Then, the first three buttons will be used to control the focus, exposure, and white
balance settings. These buttons will have two modes: locked and unlocked. In order
to do it, we should implement the corresponding actions:
- (IBAction)actionLockFocus:(id)sender
{
 if (isFocusLocked)
 {
 [self.videoCamera unlockFocus];
 [lockFocusButton setTitle:@"Lock focus"];
 isFocusLocked = NO;
 }
 else
 {
 [self.videoCamera lockFocus];
 [lockFocusButton setTitle:@"Unlock focus"];
 isFocusLocked = YES;
 }

Instant OpenCV for iOS

58

}

- (IBAction)actionLockExposure:(id)sender
{
 if (isExposureLocked)
 {
 [self.videoCamera unlockExposure];
 [lockExposureButton setTitle:@"Lock exposure"];
 isExposureLocked = NO;
 }
 else
 {
 [self.videoCamera lockExposure];
 [lockExposureButton setTitle:@"Unlock exposure"];
 isExposureLocked = YES;
 }
}

- (IBAction)actionLockBalance:(id)sender
{
 if (isBalanceLocked)
 {
 [self.videoCamera unlockBalance];
 [lockBalanceButton setTitle:@"Lock balance"];
 isBalanceLocked = NO;
 }
 else
 {
 [self.videoCamera lockBalance];
 [lockBalanceButton setTitle:@"Unlock balance"];
 isBalanceLocked = YES;
 }
}

3.	 The remaining fourth button will change the camera image orientation relative to the
device orientation. It has two possible modes, and we just change the current mode
in the action:

- (IBAction)rotationButtonPressed:(id)sender
{
 videoCamera.rotateVideo = !videoCamera.rotateVideo;
}

Instant OpenCV for iOS

59

How it works...
First, let's investigate the focus changing on iOS devices. The iOS camera API supports three
modes for camera focus:

ff AVCaptureFocusModeLocked: When enabled, the focus becomes fixed.

ff AVCaptureFocusModeAutoFocus: When enabled, the camera performs an
autofocus operation and then returns to the locked mode.

ff AVCaptureFocusModeContinuousAutoFocus: When enabled, the camera
continuously monitors focus and autofocuses as needed.

CvVideoCamera uses the AVCaptureFocusModeContinuousAutoFocus mode by
default, so the focus may change with the scene. This can make the process of camera
calibration much more difficult. The best way, in this case, is to set the focus to some special
value (for example, infinity), but unfortunately, the iOS API doesn't contain all functions
needed by computer vision specialists. There is no way to programmatically set the camera
focus of an iOS device to infinity or any other predefined value. So we can only lock the current
focus value. For that purpose, the CvVideoCamera class provides the lockFocus method.
It changes the focus mode to the AVCaptureFocusModeLocked value. In order to unlock it
again, you should use the unlockFocus function.

You can also control the exposure and white balance in the same way using lockExposure
and lockBalance functions.

To control image rotation in camera, you can change the rotateVideo property. The default
value of this variable is NO.

In previous OpenCV versions the default value was YES.

In this mode, the camera image will not be rotated with the device rotation. If you change this
value, the image will be rotated every time a device changes its orientation by 90 degrees.

Each newly added button in this project allows you to switch between the two modes. To
indicate mode changing, we'll change the button's text. For that purpose, you can use the
setTitle method.

There's more...
AVFoundation contains a lot of useful functions for advanced control of the iOS camera. For
example, you can get exposure time for each frame. If you need such fine-grain control, you
should work with AVFoundation directly.

Instant OpenCV for iOS

60

Applying effects to live video (Intermediate)
In this recipe, we'll consider an example showing how to take a live video feed and apply
an image filter in real-time. As we discussed previously, you should only implement the
processImage method. Also, we'll add displaying the FPS number directly in camera
images, it can help you in the optimization process. The following is an example snapshot
of the application:

Getting ready
We will use the Recipe10_CapturingVideo project as a starting point, trying to apply
previously implemented RetroFilter to the video stream. We also suppose that the
RetroFilter class, and its resources were added to the CvEffects static library project.
Source code can be found in the Recipe12_ProcessingVideo folder in the code bundle
that accompanies this book. For this recipe, you can't use Simulator, as it doesn't support
working with camera.

Instant OpenCV for iOS

61

How to do it...
The following are the required steps:

1.	 Add instance variables for storing retro filter properties.

2.	 Add an initialization of the filter to the button's action.

3.	 Finally, we'll implement applying the filter in the processImage function.

Let's implement the described steps:

1.	 First, we should add the RetroFilter::Parameters variable and a pointer
to the filter to the Controller interface. Also, we'll add a variable for storing the
previous time for FPS calculation:
@interface ViewController : UIViewController<CvVideoCameraDelega
te>
{
 CvVideoCamera* videoCamera;
 BOOL isCapturing;
 RetroFilter::Parameters params;
 cv::Ptr<RetroFilter> filter;
 uint64_t prevTime;
}

2.	 In order to initialize filter properties, we should add some code to the
viewDidLoad function:
// Load textures
UIImage* resImage = [UIImage imageNamed:@"scratches.png"];
UIImageToMat(resImage, params.scratches);

resImage = [UIImage imageNamed:@"fuzzy_border.png"];
UIImageToMat(resImage, params.fuzzyBorder);

filter = NULL;
prevTime = mach_absolute_time();

3.	 As we know the resolution of the camera only after session starts, we should
create a filter object when the StartCapture button is pressed:
-(IBAction)startCaptureButtonPressed:(id)sender
{
 [videoCamera start];
 isCapturing = YES;

 params.frameSize = cv::Size(videoCamera.imageWidth,

Instant OpenCV for iOS

62

 videoCamera.imageHeight);

 if (!filter)
 filter = new RetroFilter(params);
}

4.	 Finally, we should apply the filter to a camera image:
- (void)processImage:(cv::Mat&)image
{
 cv::Mat inputFrame = image;

 BOOL isNeedRotation = image.size() != params.frameSize;
 if (isNeedRotation)
 inputFrame = image.t();

 // Apply filter
 cv::Mat finalFrame;
 filter->applyToVideo(inputFrame, finalFrame);

 if (isNeedRotation)
 finalFrame = finalFrame.t();

 // Add fps label to the frame
 uint64_t currTime = mach_absolute_time();
 double timeInSeconds = machTimeToSecs(currTime - prevTime);
 prevTime = currTime;
 double fps = 1.0 / timeInSeconds;
 NSString* fpsString =
 [NSString stringWithFormat:@"FPS = %3.2f",
fps];
 cv::putText(finalFrame, [fpsString UTF8String],
 cv::Point(30, 30), cv::FONT_HERSHEY_COMPLEX_SMALL,
 0.8, cv::Scalar::all(255));

 finalFrame.copyTo(image);
}

5.	 We will use the following function to convert the measured time to seconds:
static double machTimeToSecs(uint64_t time)
{
 mach_timebase_info_data_t timebase;
 mach_timebase_info(&timebase);
 return (double)time * (double)timebase.numer /
 (double)timebase.denom / 1e9;
}

Instant OpenCV for iOS

63

6.	 As you can see, this code contains the mach_timebase_info structure that is
defined in the following header file:

#import <mach/mach_time.h>

How it works...
In the previous cases, we always created the filter object right before using it. In the case of
live video, we cannot do it, because the performance issues come out on top. So we'll initialize
the RetroFilter object only once. For this purpose, we have to add a smart pointer, which
points to the filter object, to the Controller interface and initialize it after starting the video
capturing process. We can't do it in the viewDidLoad method, because we should know the
camera resolution from before.

To calculate FPS, we have to add the prevTime field property. We will measure the time
between processImage calls with this variable. At the time of the first call to this method,
we'll initialize this property with the current time. During the next call, we will be able to
measure the working time of the filter function, plus the time needed to get the camera
image as a difference between current time and value of the prevTime variable. After
that, we can convert it to seconds and calculate the resulting FPS value. In order to display
the number on the screen, we'll use the cv::putText function.

There's more...
Even on the latest iOS devices (iPad 4 and iPhone 5) our filter shows good FPS (~30) only
on low resolutions, for example 352 x 288. In the next recipes, we'll consider a few ways
to optimize the OpenCV applications with iOS- and ARM-specific techniques.

Saving video from camera (Simple)
In the earlier recipes, we saved images, after some filtering, to Gallery as user's photos. In this
recipe, we will investigate how to create a video file from camera images and save it to Gallery.

Getting ready
We will use the Recipe12_CapturingVideo project as a starting point, trying to add the
possibility to save processed camera images as video. The source code can be found in the
Recipe13_SavingVideo folder in the code bundle that accompanies this book. For this
recipe, you can't use Simulator, as it doesn't support camera.

Instant OpenCV for iOS

64

How to do it...
One of the many features supported by the latest iOS devices is 1080p HD video recording.
It is incredible, because it is the largest resolution for the majority of modern TVs. Also,
the modern iOS devices support hardware encoding with the H.264 codec and QuickTime
container (.mov).

The following are the required steps:

1.	 Enable video recording by changing recordVideo property.

2.	 Add code for copying resulting video to Gallery when capturing is stopped.

Let's implement the described steps:

1.	 In order to enable video recording, we'll change the default value of the
recordVideo property in the viewDidLoad method:
videoCamera.recordVideo = YES;

2.	 After that, we will add additional code to the Stop capture button's action:

-(IBAction)stopCaptureButtonPressed:(id)sender
{
 [videoCamera stop];

 NSString* relativePath = [videoCamera.videoFileURL
relativePath];
 UISaveVideoAtPathToSavedPhotosAlbum(relativePath, nil, NULL,
NULL);

 //Alert window
 UIAlertView *alert = [UIAlertView alloc];
 alert = [alert initWithTitle:@"Status"
 message:@"Saved to the Gallery!"
 delegate:nil
 cancelButtonTitle:@"Continue"
 otherButtonTitles:nil];
 [alert show];

 isCapturing = FALSE;
}

Instant OpenCV for iOS

65

How it works...
At a high level, the main method of the CvVideoCamera class (that captures frames and
processes them) looks like the following:

while (flag)
{
 if (self.delegate)
 {
 //Get current frame

 //Call process function

 if (self.recordVideo == YES) {
 //Add the image to video file
 }
 }
}

In other words, the processImage method will be called for each frame after calling the
start method. And each processed frame is saved to the resulting video file if the value of
the recordVideo variable is YES.

When a user clicks on the Stop capture button, the stopCaptureButtonPressed method
is called. In this function, we have to call the stop method initially. After that, the resulting
video file becomes available in tmp folder of the current application. You can copy it from
device with some software, such as iFunBox. You can get the path to this file through the
videoCamera.videoFileURL property. In order to copy it to Gallery, we should call the
UISaveVideoAtPathToSavedPhotosAlbum function using the path to the generated file.
After that, we can show an alert window with a notification message about video saving as
done in the Capturing a video from camera (Simple) recipe.

Optimizing performance with ARM NEON
(Advanced)

NEON is a set of single instruction, multiple data (SIMD) instructions for ARM, and it can
help in performance optimization. In this recipe, we will learn how to add NEON support to
your project, and how to vectorize the code using it.

Instant OpenCV for iOS

66

Getting ready
We will use the Recipe12_ProcessingVideo project as a starting point, trying to minimize
the processing time. The source code is available in the Recipe14_OptimizingWithNEON
folder in the code bundle that accompanies this book. For this recipe, you can't use Simulator,
as NEON instructions are not supported on it and they are ARM-specific, while Simulator is x86.

How to do it...
The following is how we will optimize our video processing application:

1.	 Profile the application and find hotspots.

2.	 Enable NEON support in our source code.

3.	 Create an alternative implementation for the bottleneck functions using NEON.

Let's implement the described steps:

1.	 First of all, we need to profile the RetroFilter::applyToVideo method, as it is
the most time consuming part of our application. We'll create a copy of this method
with the name applyToVideo_optimized, and insert time measurements in it, as
we did in the Printing a postcard (Intermediate) recipe. We'll not show the code of the
method here, as it differs with these measurements only.

It is generally a good practice to use special profiling tools to find
hotspots in an application. But in our case, we only have a few functions,
and it is better to measure their individual time without using any tools.
Image processing tasks are quite time consuming, so you can easily
detect bottlenecks with simple logging, and focus on optimization.

2.	 The following is a sample console log with processing steps:
TIMER_ConvertingToGray: 8.28ms

TIMER_IntensityVariation: 16.23ms

TIMER_AddingScratches: 4.46ms

TIMER_FuzzyBorder: 14.65ms

TIMER_ConvertingToBGR: 2.59ms

2013-05-25 19:04:12.879 Recipe14_OptimizingWithNEON[4503:5203]
Processing time = 48.05ms; Running average FPS = 20.1;

Instant OpenCV for iOS

67

Profiling will show that there are two major hotspots in our application: alphaBlendC1
function and the matrix multiplication with scalar (intensity variation). Because both
functions process individual pixels independently, we can parallelize their execution. We
then have several choices, such as multi-threading (via libdispatch) of vectorization
using the NEON SIMD instruction set. To process images with several threads, we can
split them into several stripes (for example, into four horizontal stripes) and process
them as submatrices. This approach is quite easy to implement, and it actually doesn't
require memory copy.

3.	 But let's focus on NEON; we will put the vectorized code to the Processing_
NEON.cpp file of the CvEffects static library project. It is shown in the following
code snippet:
#include "Processing.hpp"

#if defined(__ARM_NEON__)
 #include <arm_neon.h>
#endif

#define USE_NEON true
#define USE_FIXED_POINT false

using namespace cv;

void alphaBlendC1_NEON(const Mat& src, Mat& dst, const Mat& alpha)
{
 CV_Assert(src.type() == dst.type() == alpha.type() == CV_8UC1
&&
 src.isContinuous() && dst.isContinuous() &&
 alpha.isContinuous() &&
 (src.cols % 8 == 0) &&
 (src.cols == dst.cols) && (src.cols == alpha.cols));

#if !defined(__ARM_NEON__) || !USE_NEON
 alphaBlendC1(src, dst, alpha);
#else
 uchar* pSrc = src.data;
 uchar* pDst = dst.data;
 uchar* pAlpha = alpha.data;
 for(int i=0; i < src.total(); i+=8, pSrc+=8, pDst+=8,
pAlpha+=8)
 {
 // Load data from memory to NEON registers
 uint8x8_t vsrc = vld1_u8(pSrc);

Instant OpenCV for iOS

68

 uint8x8_t vdst = vld1_u8(pDst);
 uint8x8_t valpha = vld1_u8(pAlpha);
 uint8x8_t v255 = vdup_n_u8(255);

 // Multiply source pixels
 uint16x8_t mult1 = vmull_u8(vsrc, valpha);

 // Multiply destination pixels
 uint8x8_t tmp = vsub_u8(v255, valpha);
 uint16x8_t mult2 = vmull_u8(tmp, vdst);

 //Add them
 uint16x8_t sum = vaddq_u16(mult1, mult2);

 // Take upper bytes (approximates division by 255)
 uint8x8_t out = vshrn_n_u16(sum, 8);

 // Store the result back to the memory
 vst1_u8(pDst, out);
 }
#endif
}

void multiply_NEON(Mat& src, float multiplier)
{
 CV_Assert(src.type() == CV_8UC1 && src.isContinuous() &&
 (src.cols % 8 == 0));

#if !defined(__ARM_NEON__) || !USE_NEON
 src *= multiplier;
#elif USE_FIXED_POINT
 uchar fpMult = uchar((multiplier * 128.f) + 0.5f);
 uchar* ptr = src.data;
 for(int i = 0; i < src.total(); i+=8, ptr+=8)
 {
 uint8x8_t vsrc = vld1_u8(ptr);
 uint8x8_t vmult = vdup_n_u8(fpMult);
 uint16x8_t product = vmull_u8(vsrc, vmult);
 uint8x8_t out = vqshrn_n_u16(product, 7);
 vst1_u8(ptr, out);
 }

#else
 uchar* ptr = src.data;
 for(int i = 0; i < src.total(); i+=8, ptr+=8)
 {

Instant OpenCV for iOS

69

 float32x4_t vmult1 = vdupq_n_f32(multiplier);
 float32x4_t vmult2 = vdupq_n_f32(multiplier);

 uint8x8_t in = vld1_u8(ptr); // Load

 // Convert to 16bit
 uint16x8_t in16bit = vmovl_u8(in);

 // Split vector
 uint16x4_t in16bit1 = vget_high_u16(in16bit);
 uint16x4_t in16bit2 = vget_low_u16(in16bit);

 // Convert to float
 uint32x4_t in32bit1 = vmovl_u16(in16bit1);
 uint32x4_t in32bit2 = vmovl_u16(in16bit2);
 float32x4_t inFlt1 = vcvtq_f32_u32(in32bit1);
 float32x4_t inFlt2 = vcvtq_f32_u32(in32bit2);

 // Multiplication
 float32x4_t outFlt1 = vmulq_f32(vmult1, inFlt1);
 float32x4_t outFlt2 = vmulq_f32(vmult2, inFlt2);

 // Convert from float
 uint32x4_t out32bit1 = vcvtq_u32_f32(outFlt1);
 uint32x4_t out32bit2 = vcvtq_u32_f32(outFlt2);
 uint16x4_t out16bit1 = vmovn_u32(out32bit1);
 uint16x4_t out16bit2 = vmovn_u32(out32bit2);

 // Combine back
 uint16x8_t out16bit = vcombine_u16(out16bit2, out16bit1);

 // Convert to 8bit
 uint8x8_t out8bit = vqmovn_u16(out16bit);

 // Store to the memory
 vst1_u8(ptr, out8bit);
 }
#endif
}

4.	 Now, we should call these functions from the applyToVideo_optimized method.

5.	 When ready, build and run the application. Depending on your device, you can see up
to two times the total performance speedup. Speedup of optimized functions alone is
much higher.

Instant OpenCV for iOS

70

How it works...
Nowadays, SIMD instructions are available on many architectures, from desktop CPU to
embedded DSP. ARM processors provide a rich set of instructions, called NEON; they are
available on all iOS devices starting from iPhone 3GS.

To start writing NEON code, you have to add the following declaration to your file:

#if defined(__ARM_NEON__)
 #include <arm_neon.h>
#endif

Now you can use all the types and functions declared there. Please note, that we're going to
use the so-called intrinsics—functions in C that serve as a wrapper over NEON assembler
instructions. In fact, you can write your code in pure assembler, but it will worsen the
readability, although there is a small performance gain, it usually isn't worth it.

Let's consider how the alphaBlendC1_optimized function works. This function should use
the following formula to calculate the resulting pixel's value:

dst(x, y) = [alpha(x, y) * src(x, y) + (255.0 - alpha(x, y)) * dst(x, y)] / 255.0;

The NEON code does exactly that, except the very last division, which is approximated by
bit-shifting 8 positions to the right (vshrn_n_u16 function). This means that we divide by
256, instead of 255, and the result of the vectorized function may differ from the original
implementation. But we can tolerate that, as we're working on a visual effect, and the possible
difference is negligibly small. But please note that such approximations may be unacceptable
in a numerical pipeline.

You can also see that we process 8 pixels simultaneously. Our alphaBlendC1_optimized
function heavily relies on the exact format of input matrices (that is, is one channel, is
continuous, and the number of columns is a multiple of 8), but it can be easily generalized for
other situations.

If the image width is not divided by the width of the SIMD instruction, the
common practice is to process the tail with ordinary C code. As images are
normally large enough, this non-vectorized processing near the right-hand
side border doesn't affect performance much.

The multiply function performs simple multiplication with a floating-point coefficient. But
we need to do a sequence of conversions to perform the multiplication. But still, because we
process 8 pixels simultaneously, the speedup is impressive.

Instant OpenCV for iOS

71

There's more...
Performance optimization with NEON is a deep and wide subject. Most image processing
functions could be optimized for 3x speedup, without affecting accuracy. You can even get
more if you apply some approximations. In the following sections, we provide some pointers
for further study.

NEON
ARM Information Center provides extensive documentation on NEON intrinsics, and can be
found at http://bit.ly/3848_ARMNEON. You can see that the instruction set is quite rich,
and allows you to optimize your code in different situations.

Fixed-point arithmetic
Our multiply function is a naive translation of the C++ code to NEON intrinsics. But
sometimes, it is possible to achieve much better speedup by using some approximation.
The very popular method of approximating floating-point calculations is the so-called
fixed-point arithmetic, where we store real numbers in variables of integer type
(http://en.wikipedia.org/wiki/Fixed-point_arithmetic).

In our case, we can convert the value of multiplier into the Q1.7 format, perform
multiplication, and then scale the result back. More about the Qm.n format can be found at
http://en.wikipedia.org/wiki/Q_(number_format). The only difference is that
the actual Q1.7 format requires 9 bits, where the first bit is used for the sign. But because
pixel values are positive, we can drop the sign bit and pack the Q1.7 format into 8 bits of a
single byte.

In the following code, we demonstrate the use of the fixed-point arithmetic:

 uchar src = 111;
 float multiplier = 0.76934;
 uchar dst = 0;

 dst = uchar(src * multiplier);
 printf("dst floating-point = %d\n", dst);

 uchar fpMultiplier = uchar((multiplier * 128.f) + 0.5f);
 dst = (src * fpMultipiler) >> 7; // 128 = 2^7
 printf("dst fixed-point = %d\n", dst);

The following is the console output for that code. You can see that approximation is not exact,
but again, we can tolerate it in our application. We can also try to use the Qm.n format with a
larger value of n, for example, Q1.15:

 dst floating-point = 85

 dst fixed-point = 84

Instant OpenCV for iOS

72

It can bee seen that fixed-point arithmetic uses integer operations instead of floating-point,
and so is much more efficient. At the same time, it can be effectively vectorized with NEON,
producing even higher speedups.

Please note that you shouldn't expect speedup in our example, as the NEON version is already
good enough. But if the numerical pipeline is a little bit more complicated, fixed-point may give
you an impressive speedup.

Detecting facial features (Advanced)
Many human-computer interaction (HCI) applications require knowledge about position of a
face and facial features in a frame. We will learn how OpenCV can be used for detecting facial
features. Detected faces are decorated in a way, as shown in the following screenshot:

Getting ready
The source code for this recipe is available in the Recipe15_DetectingFacialFeatures
folder in the code bundle that accompanies this book. You can't use Simulator, as we're going
to use camera in this recipe.

Instant OpenCV for iOS

73

How to do it...
The following are the steps required to implement the application for this recipe:

1.	 Add a new C++ class to our CvEffects library, called FaceAnimator,
together with its resources.

2.	 Implement the facial feature detection functionality.

3.	 Add some animation, based on the position of detected facial features.

4.	 Call this class from the video processing application.

Let's implement the described steps:

1.	 First of all, add a new class with the following interface to the CvEffects static
library project. You should also add three XML-files with cascade classifiers
(lbpcascade_frontalface.xml, haarcascade_mcs_eyepair_big.xml,
and haarcascade_mcs_mouth.xml), and two images that are going to be used
for animation (glasses.png and mustache.png):
class FaceAnimator
{
public:
 struct Parameters
 {
 cv::Mat glasses;
 cv::Mat mustache;
 cv::CascadeClassifier faceCascade;
 cv::CascadeClassifier eyesCascade;
 cv::CascadeClassifier mouthCascade;
 };

 FaceAnimator(Parameters params);
 virtual ~FaceAnimator() {};

 void detectAndAnimateFaces(cv::Mat& frame);

protected:
 Parameters parameters_;
 cv::Mat maskOrig_;
 cv::Mat maskMust_;
 cv::Mat grayFrame_;

 void putImage(cv::Mat& frame, const cv::Mat& image,
 const cv::Mat& alpha, cv::Rect face,
 cv::Rect facialFeature, float shift);
 void PreprocessToGray(cv::Mat& frame);

Instant OpenCV for iOS

74

 // Members needed for optimization with Accelerate Framework
 void PreprocessToGray_optimized(cv::Mat& frame);
 cv::Mat accBuffer1_;
 cv::Mat accBuffer2_;
};

2.	 Next, we need to implement the class's methods. In the following code snippet, we
show the only the most important detectAndAnimateFaces method:
static bool FaceSizeComparer(const Rect& r1, const Rect& r2)
{
 return r1.area() > r2.area();
}
void FaceAnimator::detectAndAnimateFaces(cv::Mat& frame)
{
 TS(Preprocessing);
 //PreprocessToGray(frame);
 PreprocessToGray_optimized(frame);
 TE(Preprocessing);

 // Detect faces
 TS(DetectFaces);
 std::vector<Rect> faces;
 parameters_.faceCascade.detectMultiScale(grayFrame_, faces,
1.1,
 2, 0, Size(100,
100));
 TE(DetectFaces);
 printf("Detected %lu faces\n", faces.size());

 // Sort faces by size in descending order
 sort(faces.begin(), faces.end(), FaceSizeComparer);

 for (size_t i = 0; i < faces.size(); i++)
 {
 Mat faceROI = grayFrame_(faces[i]);

 std::vector<Rect> facialFeature;
 if (i % 2 == 0)
 {
 // Detect eyes
 Point origin(0, faces[i].height/4);
 Mat eyesArea = faceROI(Rect(origin,
 Size(faces[i].width, faces[i].height/4)));

Instant OpenCV for iOS

75

 TS(DetectEyes);
 parameters_.eyesCascade.detectMultiScale(eyesArea,
 facialFeature, 1.1, 2, CV_HAAR_FIND_BIGGEST_
OBJECT,
 Size(faces[i].width * 0.55, faces[i].height *
0.13));
 TE(DetectEyes);

 if (facialFeature.size())
 {
 TS(DrawGlasses);
 putImage(frame, parameters_.glasses, maskOrig_,
 faces[i], facialFeature[0] + origin,
-0.1f);
 TE(DrawGlasses);
 }
 }
 else
 {
 // Detect mouth
 Point origin(0, faces[i].height/2);
 Mat mouthArea = faceROI(Rect(origin,
 Size(faces[i].width, faces[i].height/2)));

 parameters_.mouthCascade.detectMultiScale(
 mouthArea, facialFeature, 1.1, 2,
 CV_HAAR_FIND_BIGGEST_OBJECT,
 Size(faces[i].width * 0.2, faces[i].height * 0.13)
);

 if (facialFeature.size())
 {
 putImage(frame, parameters_.mustache, maskMust_,
 faces[i], facialFeature[0] + origin,
0.3f);
 }
 }
 }
}

3.	 Now its time to use the FaceAnimator class in our application. First of all, set up
the copying of the FaceAnimator.hpp public header file, so our application will
be able to see the class. Then you should rebuild the library project. After that, you
should add references to cascade files and images from the CvEffects project, as
we did earlier.

Instant OpenCV for iOS

76

4.	 Now, FaceAnimator can be used from the Objective-C code, as we did for the
RetroFilter class in the Applying effects to live video (Intermediate) recipe. The
following is the declaration of our ViewController class.
@interface ViewController : UIViewController<CvVideoCameraDelega
te>
{
 CvVideoCamera* videoCamera;
 BOOL isCapturing;

 FaceAnimator::Parameters parameters;
 cv::Ptr<FaceAnimator> faceAnimator;
}

5.	 We also need to load all the resources in the viewDidLoad method, then create a
class instance in the startCaptureButtonPressed method, and apply processing
in the processImage method. We don't show these methods, but they are almost
identical to what we've written before for the RetroFilter class. You can build and
run the application when all of the integration code is added.

How it works...
Let's consider how the detectAndAnimateFaces method works. You can see that the
processing time of every step is measured, as the overall processing is quite expensive.

We are already familiar with detecting objects (and faces in particular) using OpenCV's
CascadeClassifier class. You can see that we use a different cascade in this example,
which is based on LBP-features (Local Binary Patterns). This cascade works several
times faster than the Haar-based cascade and the quality doesn't differ much. And this
performance difference is important, because we're going to process live video.

When the detection is completed, we sort the vector of detected faces by their size using the
FaceSizeComparer function. The for loop is used to detect facial features within every
face. We decided to detect eyes in every even face, and mouth in every odd face.

We use a couple of tricks to improve the quality and minimize the detection time. First of all,
we limit the search area, so that eyes are detected on the upper half of the face rectangle,
and the mouth in the lower half. This not only improves the performance, but also allows
avoiding false detections. Secondly, we search only for the largest object using the CV_HAAR_
FIND_BIGGEST_OBJECT flag. It stops the detection when the first object is found, so we
don't waste our time searching for another pair of eyes or mouth in the same face rectangle. It
is obvious that even if we find something, this should be a false detection. Finally, we control
the minimal facial feature size. The following are empirically found minimal relative sizes for
eyes and mouth:

Size(faces[i].width * 0.55, faces[i].height * 0.13) //eyes
Size(faces[i].width * 0.20, faces[i].height * 0.13) //mouth

Instant OpenCV for iOS

77

Finally, we put some animation over the detected facial feature, using the alpha blending
function from the previous recipes.

There's more...
This sample presents the very basic approach to facial feature detection. It can be significantly
improved in both quality and speed. Let's consider some opportunities.

Performance
First of all, we need to detect performance bottlenecks and try to avoid them or optimize
with NEON. In our example, it can be found that a cvtColor function takes a significant
percentage of the processing time. It is a good candidate to be vectorized. Another candidate
is alpha blending in the putImage function.

Tracking between detections
Another approach to optimize the performance is to run face and facial feature detection
every k frames, and to run optical tracking between them. One can try to use the
calcOpticalFlowPyrLK function on the points returned by the goodFeaturesToTrack
method. If the goodFeaturesToTrack method also takes much time, we can cover the face
rectangle with a simple regular grid of points. The median motion vector (after some filtering)
can give us a hint about the new face position. Median-Flow tracker can be a good candidate
for this task (http://bit.ly/3848_MedianFlowTracker).

Active Shape Model
One of limitations of the Cascade Classifier approach is that it returns only a bounding box,
while some applications may need contour representation of a facial feature. There are some
approaches that allow fitting a contour model of the entire face to an image. One of the most
popular methods is Active Shape Model (ASM); several open-source implementations are
also available.

There are also some other approaches; one of them was developed by Jason Saragih and is
covered in detail in the book Mastering OpenCV with Practical Computer Vision Projects, Packt
Publishing. The source code is available online at http://bit.ly/3848_FaceTracking.

Using the Accelerate framework (Advanced)
The Accelerate framework can be very useful for performance optimization, especially if your
application intensively does some vector and matrix math, or signal and image processing. We
will learn how to link the framework and process OpenCV matrices with it.

Instant OpenCV for iOS

78

Getting ready
All the source code changes will be localized in the CvEffects library, so you can use the
same Recipe15_DetectingFacialFeatures project. Again, you can't use Simulator,
as we're going to use the camera.

How to do it...
In the previous recipe, we have profiled the FaceAnimator class and slightly improved the
facial feature detection time by tuning the parameters. But the very first preprocessing step
was still quite expensive, and we're going to optimize it using the Accelerate framework. In
fact, we could work on a custom NEON optimization as before, but Accelerate could be a
good time saver, as it provides a wide set of optimized functions for image processing. We
will replace cv::cvtColor and cv::equalizeHist with calls to Accelerate functions.
Histogram equalization helps the detection algorithm to better tolerate illumination changes.

The following are the steps required to accomplish the task:

1.	 Link the Accelerate framework to the project.

2.	 Declare two new functions: cvtColor_Accelerate and equalizeHist_
Accelerate.

3.	 Implement them using the Accelerate API.

4.	 Replace the original FaceAnimator::PreprocessToGray method with
the new FaceAnimator::PreprocessToGray_optimized method that
addresses calls to the optimized functions.

Let's implement the described steps:

1.	 So, first of all, we need to link the Accelerate framework by navigating to Build
Phases | Link Binary With Libraries in the project settings.

2.	 Then we will add these declarations to the Processing.hpp header file:
// Accelerate-optimized functions
int cvtColor_Accelerate(const cv::Mat& src, cv::Mat& dst,
 cv::Mat buff1, cv::Mat buff2);

int equalizeHist_Accelerate(const cv::Mat& src, cv::Mat& dst);

3.	 Next, let's add a new Processing_Accelerate.cpp file to the CvEffects
project, and insert the following code in it:
#include <Accelerate/Accelerate.h>
#include <opencv2/core/core.hpp>

using namespace cv;

Instant OpenCV for iOS

79

int cvtColor_Accelerate(const Mat& src, Mat& dst,
 Mat buff1, Mat buff2)
{
 vImagePixelCount rows = static_cast<vImagePixelCount>(src.
rows);
 vImagePixelCount cols = static_cast<vImagePixelCount>(src.
cols);

 vImage_Buffer _src = { src.data, rows, cols, src.step };
 vImage_Buffer _dst = { dst.data, rows, cols, dst.step };
 vImage_Buffer _buff1 = { buff1.data, rows, cols, buff1.step };
 vImage_Buffer _buff2 = { buff2.data, rows, cols, buff2.step };

 const int16_t matrix[4 * 4] = { 77, 0, 0, 0,
 150, 0, 0, 0,
 29, 0, 0, 0,
 0, 0, 0, 0 };
 int32_t divisor = 256;

 vImage_Error err;
 err = vImageMatrixMultiply_ARGB8888(&_src, &_buff1,
 matrix, divisor,
 NULL, NULL, 0);

 err = vImageConvert_ARGB8888toPlanar8(&_buff1, &_dst,
 &_buff2, &_buff2,
 &_buff2, 0);
 return err;
}

int equalizeHist_Accelerate(const Mat& src, Mat& dst)
{
 vImagePixelCount rows = static_cast<vImagePixelCount>(src.
rows);
 vImagePixelCount cols = static_cast<vImagePixelCount>(src.
cols);

 vImage_Buffer _src = { src.data, rows, cols, src.step };
 vImage_Buffer _dst = { dst.data, rows, cols, dst.step };

 vImage_Error err;
 err = vImageEqualization_Planar8(&_src, &_dst, 0);

 return err;
}

Instant OpenCV for iOS

80

4.	 Now, we have to call this code from the FaceAnimator class. For that, add the
members accbuffer1 and accBuffer2 of the cv::Mat type to the class'
declaration, and add the following method to the implementation file:
void FaceAnimator::PreprocessToGray_optimized(Mat& frame)
{
 grayFrame_.create(frame.size(), CV_8UC1);
 accBuffer1_.create(frame.size(), frame.type());
 accBuffer2_.create(frame.size(), CV_8UC1);

 cvtColor_Accelerate(frame, grayFrame_, accBuffer1_,
accBuffer2_);
 equalizeHist_Accelerate(grayFrame_, grayFrame_);
}

5.	 Finally, use it instead of the original method, as shown in the following code snippet:
void FaceAnimator::detectAndAnimateFaces(Mat& frame)
{
 TS(Preprocessing);
 //PreprocessToGray(frame);
 PreprocessToGray_optimized(frame);
 TE(Preprocessing);
 ...

6.	 Build and run the application; you should see that the working time for the
preprocessing step has shortened at least twice.

How it works...
First of all, you should see that Accelerate uses the vImage_Buffer structure as an image
container. This structure is quite simple, but more importantly, it can be created on top of the
existing OpenCV matrix. We don't have to copy or convert data, and that allows to seamlessly
interleave calls to OpenCV and Accelerate, without any performance penalty. The following is
how we initialize vImage_Buffer using cv::Mat data:

 vImagePixelCount rows = static_cast<vImagePixelCount>(src.rows);
 vImagePixelCount cols = static_cast<vImagePixelCount>(src.cols);
 vImage_Buffer _src = { src.data, rows, cols, src.step };

Unfortunately, Accelerate doesn't provide color space conversions, and we have to use the
generic vImageMatrixMultiply_ARGB8888 transformation function. So, cvtColor_
Accelerate is implemented in two steps, we first convert the RGBA input matrix to another
four-channel matrix, first channel of which is the required grayscale image. Then we split the
resulting matrix into four planes, and later use only the first one.

It should be noted that vImageMatrixMultiply_ARGB8888 actually uses fixed-point

Instant OpenCV for iOS

81

arithmetic, and the numbers in the matrix variable are RGBA to Gray conversion coefficients,
multiplied by 256. That's why we use 256 to initialize the divisor:

Y = 0.299R + 0.587G + 0.114B ≈ (77R + 150G + 29B) / 256

After the conversion, we use vImageConvert_ARGB8888toPlanar8 to get the first channel
with the image intensity data.

Implementation of the equalizeHist_Accelerate is much more straightforward. We
simply call the vImageEqualization_Planar8 function, and use its result directly.

As a final note, the Accelerate framework (in contrast to OpenCV) wants the user to allocate all
the input and output buffers manually, and of course to deallocate this memory later. That's
why we call the Mat::create method for three image buffers in the PreprocessToGray_
optimized method. You shouldn't be afraid of slow memory reallocations on every frame, as
OpenCV doesn't recreate matrices if they are already in the desired format.

There's more...
We used only three functions from the Accelerate framework, but there are many more of
them. Please refer to the official documentation if you want to know more: http://bit.
ly/3848_Accelerate. You will see that many primitives from OpenCV's core and imgproc
modules can be found there. Despite the fact that Accelerate's syntax is somewhat noisy, the
use of this framework could be a cheaper solution, than to manually optimize every function
with NEON. You should also note that Accelerate not only tries to exploit CPU (with NEON
extensions), but also Digital Signal Processor (DSP), so it could provide a better speedup
than a manually vectorized code.

Building OpenCV for iOS from sources
(Advanced)

Sometimes, you may want to change the OpenCV itself, for example, to add some new cool
feature, or to fix a bug. OpenCV's BSD-like license allows you to modify the library, and we'll
learn how one can build a custom version of OpenCV.

Getting ready
There is no source code for this recipe, as we're going to build OpenCV. You will need a Git
command-line client, CMake (Version 2.8.11 or higher), and Python 2.7 installed. Usually,
Python is already installed on Mac OS, but the CMake tool needs to be downloaded from
http://cmake.org. And, you don't need an iOS device, because the compilation is done on
a host computer (so-called cross-compilation).

Instant OpenCV for iOS

82

How to do it...
The following are the steps required to get your custom OpenCV build:

1.	 Create a new directory and clone OpenCV's source code repository there.

2.	 Check out the proper Git branch or tag.

3.	 Create a symbolic link to Xcode.

4.	 Run the Python script to build the iOS framework.

5.	 Update your project(s) to link to a new framework.

6.	 Modify the OpenCV code and rebuild the framework if needed.

Let's implement the described steps:

1.	 Almost all operations in this recipe should be executed on the Terminal. So, create a
new Terminal window and create a new working directory for our experiments:
$ mkdir ~/<working_directory>

$ cd <working_directory>

2.	 Then we need to clone OpenCV sources, and we'll use the GitHub repository for that:
$ git clone https://github.com/Itseez/opencv.git

3.	 When complete, we have to check out the branch or tag, which we're going to use
as a starting point. Let's imagine we want to build the latest state of the 2.4 branch,
which is used for the OpenCV 2.4.x releases' preparation:
$ cd opencv

$ git checkout 2.4

4.	 Now, let's create a symbolic link to Xcode, so the build script can see the compiler,
header files, and so on:
$ cd /

$ sudo ln -s /Applications/Xcode.app/Contents/Developer Developer

5.	 We're now ready to build the framework. Please be patient, because it will take a
while. OpenCV is going to be built in three different configurations, and it may take a
couple of minutes:
$ cd ~/<working_directory>

$ python opencv/platforms/ios/build_framework.py build_ios

6.	 After the process is complete, your framework will be available at ~/<my_working_
directory>/build_ios/opencv2.framework. You can now add this framework
to your Xcode projects, as we did before. When rebuilt, your projects will use this new
version of OpenCV.

Instant OpenCV for iOS

83

7.	 If you want to change something in OpenCV, you can edit its code and rerun the
script. If that is possible, unchanged binaries from the previous build will be used,
and the compilation will be faster than it was the first time.

How it works...
As we mentioned before, iOS frameworks are a better way to distribute your static libraries.
In its core, they are simple libraries and headers, but they may contain binary code for several
architectures (such as armv7, armv7s, and i386 in our example). That makes them more
convenient to link from Xcode projects, because you need not think about linker configuration,
rather, you can simply add a reference to the framework.

So, the only interesting moment in this recipe is how the build_framework.py script
constructs the OpenCV framework. You can actually study its source code to get complete
understanding. For every architecture (old and new iOS devices, plus Simulator), it generates
an Xcode project using CMake and executes Xcode in order to build it. When all three
configurations are built, script forms the ~/<my_working_directory>/build_ios/
opencv2.framework directory properly, so it becomes a valid iOS framework.

When the script finishes its work, you can use the built framework as a normal OpenCV
distribution.

There's more...
Despite the fact that it is quite easy to create your custom version of OpenCV, we encourage
you to use the official one. The library is always in active development; new versions are
rolled out regularly, so if you don't want to waste too much time merging your changes,
better to stick to the official distribution.

All new source code should be developed outside of the library itself, as we did with the
CvEffects project. And, if your development grows into something stable and useful,
you can always contribute your code as a new OpenCV module, or as an extension to the
existing one.

In case you've found a bug, you can live with your custom build for some time. But you
should submit a GitHub pull request with the fix, so it is integrated into the development
branches as soon as possible. The same rule applies to performance optimizations. If your
code is faster, but still generic enough (you have tested it on multiple platforms and with
different parameters), you can submit a pull request. This way we will have an even more
stable and efficient library!

More information on the contribution process is available on the official website at
http://opencv.org/contribute.html.

Thank you for buying
Instant OpenCV for iOS

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering OpenCV with
Practical Computer Vision
Projects
ISBN: 978-1-84951-782-9 Paperback: 340 pages

Step-by-step tutorials to solve common real-world
computer vision problems for desktop or mobile, from
augmented reality and number plate recognition to face
recognition and 3D head tracking

1.	 Allows anyone with basic OpenCV experience
to rapidly obtain skills in many computer vision
topics, for research or commercial use

2.	 Each chapter is a separate project covering a
computer vision problem, written by a professional
with proven experience on that topic

3.	 All projects include a step-by-step tutorial and full
source-code, using the C++ interface of OpenCV

Mastering openFrameworks:
Creative Coding Demystified
ISBN: 978-1-84951-804-8 Paperback: 358 pages

A practical guide to creating audio-visiual interactive
projects with low-level data processing using
openFrameworks

1.	 Create cutting edge audio-visual interactive
projects, interactive installations, and sound art
projects with ease

2.	 Unleash the power of low-level data processing
methods using C++ and shaders

3.	 Make use of the next generation technologies
and techniques in your projects involving OpenCV,
Microsoft Kinect, and so on

Please check www.PacktPub.com for information on our titles

OpenCV Computer Vision
Application Programming
Cookbook
ISBN: 978-1-78216-148-6 Paperback: 350 pages

Over 50 recipes to help you build computer vision
applications in C++ using the OpenCV library

1.	 Master OpenCV, the open source library of the
computer vision community

2.	 Master fundamental concepts in computer vision
and image processing

3.	 Learn the important classes and functions of
OpenCV with complete working examples applied
on real images

Instant OpenCV Starter
ISBN: 978-1-78216-881-2 Paperback: 56 pages

Get started with OpenCV using practical, hands-on
projects

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results

2.	 Step by step installation of OpenCV in Windows
and Linux

3.	 Examples and code based on real-life
implementation of OpenCV to help the reader
understand the importance of this technology

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Instant OpenCV for iOS
	Getting started with iOS (Simple)
	Displaying an image from resources (Simple)
	Linking OpenCV to an iOS project (Simple)
	Detecting faces with Cascade Classifier (Intermediate)
	Printing a postcard (Intermediate)
	Working with images in Gallery (Intermediate)
	Applying a retro effect (Intermediate)
	Taking photos from camera (Intermediate)
	Creating a static library (Intermediate)
	Capturing a video from camera (Simple)
	Control advanced camera settings (Advanced)
	Applying effects to live video (Intermediate)
	Saving video from camera (Simple)
	Optimizing performance with ARM NEON (Advanced)
	Detecting facial features (Advanced)
	Using the Accelerate framework (Advanced)
	Building OpenCV for iOS from sources (Advanced)

